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Abstract

Single-photon avalanche diodes (SPADs) are becoming
popular in time-of-flight depth-ranging due to their unique
ability to capture individual photons with picosecond timing
resolution. However, ambient light (e.g., sunlight) incident
on a SPAD-based 3D camera leads to severe non-linear
distortions (pileup) in the measured waveform, resulting in
large depth errors. We propose asynchronous single-photon
3D imaging, a family of acquisition schemes to mitigate
pileup during data acquisition itself. Asynchronous acquisi-
tion temporally misaligns SPAD measurement windows and
the laser cycles through deterministically predefined or ran-
domized offsets. Our key insight is that pileup distortions
can be “averaged out” by choosing a sequence of offsets
that span the entire depth range. We develop a generalized
image formation model and perform theoretical analysis to
explore the space of asynchronous acquisition schemes and
design high-performance schemes. Our simulations and ex-
periments demonstrate an improvement in depth accuracy
of up to an order of magnitude as compared to the state-of-
the-art, across a wide range of imaging scenarios, including
those with high ambient flux.

1. Single-Photon Cameras
Light is fundamentally quantized; any camera records in-

coming light not continuously, but in discrete packets called
photons. A conventional camera typically captures hun-
dreds to thousands of photons per pixel to create an image.
What if cameras could record individual photons, and, pre-
cisely measure their time-of-arrival? Not only would such
cameras have extremely high sensitivity, but the captured
data will have an additional time-dimension, a rich source
of information inaccessible to conventional cameras.

There is an emerging class of sensors, called single-
photon avalanche diodes (SPADs) [30] that promise single-
photon sensitivity (Fig. 1(a)) and the ability to time-tag pho-
tons with picosecond precision. Due to these capabilities,
SPADs are driving novel functionalities such as non-line-
of-sight (NLOS) imaging [7, 22] and microscopy of bio-
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Figure 1. Single-photon cameras and 3D imaging. (a) A single-
photon camera pixel is sensitive to individual photons and can
capture photon arrival times with picosecond resolution. (b) The
extreme sensitivity and resolution makes single-photon cameras
promising candidates for several applications. (c) A single-photon
3D camera based on time-of-flight consists of a pulsed laser and
a single-photon detector that timestamps returning photons. (d)
Single-photon 3D cameras have the potential to provide extremely
high depth resolution, even at long ranges.

phenomena at nano time-scales [4]. However, so far, SPADs
are considered specialized devices suitable only for photon-
starved (dark) scenarios, and thus, restricted to a limited
set of niche applications. This raises the following ques-
tions: Can SPADs operate not just in low-light, but across
the entire gamut of imaging conditions, including high-flux
scenes [15]? In general, is it possible to leverage the excit-
ing capabilities of SPADs for a broader set of mainstream
computer vision applications (Fig. 1(b))?

In this paper, we address the above questions in the con-
text of 3D imaging. Consider a single-photon 3D camera
based on time-of-flight (ToF). It consists of a pulsed laser
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Figure 2. Imaging model of single-photon 3D cameras. (a) A single-photon 3D camera records the timestamps of returning photons
over many laser cycles and constructs a histogram of photon arrival times. In the absence of ambient light, the peak of this histogram
corresponds to the true depth. (b) In the conventional (synchronous) operation, ambient light causes photon pileup which distorts the
histogram towards earlier time bins. (c) Asynchronous acquisition prevents pileup by temporally staggering the SPAD cycles with respect
to the laser cycles, distributing the effect of pileup uniformly over all histogram bins. (d) 3D shape recovered using synchronous acquisition
shows large depth errors due to pileup. (e) Proposed asynchronous method recovers accurate 3D shape even in high ambient light.

emitting periodic pulses of light toward the scene, and a
SPAD sensor (Fig. 1(c)). Although several conventional 3D
cameras also use the ToF principle, single-photon 3D cam-
eras have a fundamentally different imaging model. The
SPAD detects at most one returning photon per laser pulse,
and records its time-of-arrival. Arrival times over several
laser pulses are recorded to create a temporal histogram
of photon arrivals, as shown in Fig. 2(a). Under low in-
cident flux, the histogram is approximately a linearly scaled
replica of the incident waveform, and thus, can be used to
recover scene depths [27, 19]. Due to the high timing reso-
lution of SPADs, single-photon 3D cameras are capable of
achieving “laser-scan quality” depth resolution (1–10 mm),
at long distances (100–1000 meters) (Fig. 1(d)).

Single-photon 3D imaging in sunlight: Due to the pecu-
liar histogram formation process, single-photon 3D cameras
cannot operate reliably under ambient light (e.g., sunlight in
outdoor conditions). This is because early arriving ambient
photons prevent the SPAD from measuring the signal (laser)
photons that may arrive at a later time bin of the histogram.
This distorts the histogram measurements towards earlier
time bins, as shown in Fig. 2(b). This non-linear distortion,
known as photon pileup [14, 25, 17] makes it challenging to
reliably locate the laser pulse, resulting in large depth errors.
Although there has been a lot of research toward correct-
ing these distortions in post-processing [14, 9, 23, 25, 28],
strong pileup due to ambient light continues to limit the
scope of this otherwise exciting technology.

We propose asynchronous single-photon 3D imaging,
a family of computational imaging techniques for SPAD-
based 3D cameras with the goal of preventing pileup during
acquisition itself. In conventional ToF cameras, the laser
and sensor are temporally synchronized. In contrast, we
desynchronize the SPAD acquisition windows with respect

to the laser pulses. This introduces different temporal off-
sets between laser cycles and SPAD acquisition windows, as
shown in Fig. 2(c). The key insight is that cycling through a
range of temporal offsets (across different laser cycles) en-
ables detecting photons in later time bins that would other-
wise have been masked by early-arriving ambient photons.
This distributes the effect of pileup across all histogram
bins, thus eliminating the structured distortions caused by
the synchronous measurements, as shown in Fig. 2(c).

At first glance, it may appear that such asynchronous
measurements may not provide consistent depth infor-
mation. The main idea lies in computationally re-
synchronizing the photon timing measurements with the
laser cycles. To this end, we develop a generalized image
formation model and derive a maximum likelihood estima-
tor (MLE) of the true depth that accounts for arbitrary tem-
poral offsets between measurement and laser cycles. Based
on these ideas, we propose two asynchronous acquisition
methods: uniform and photon-driven, which shift the SPAD
window with respect to laser either deterministically or
stochastically. These techniques can be implemented with
minimal modifications to existing systems, while achieving
up to an order-of-magnitude improvements in depth accu-
racy. An example is shown in Fig. 2(d–e).

Implications and future outlook: Due to their compati-
bility with mainstream CMOS sensor fabrication lines, the
capabilities of SPAD cameras continue to grow rapidly [11,
32, 12, 20, 18, 1, 3]. As a result, the proposed methods,
aided by rapid ongoing advances in SPAD technology, will
potentially spur wide-spread adoption of single-photon sen-
sors as all-purpose cameras in demanding computer vision
and robotics applications, where the ability to perform re-
liably in both photon-starved and photon-flooded scenarios
is critical to success.



2. Related Work
Photon pileup mitigation for SPAD cameras: Perhaps the
most widely adopted approach for preventing pileup is at-
tenuation, i.e., optically blocking the total photon flux in-
cident on the SPAD so that only 1-5% of the laser pulses
lead to a photon detection [2, 3].1 Recent work [14, 13]
has shown that this rule-of-thumb extreme attenuation is
too conservative and the optimal operating flux is consid-
erably higher. Various computational [25, 14] and hard-
ware [1, 3, 35] techniques for mitigating pileup have also
been proposed. These approaches are complementary to the
proposed asynchronous acquisition, and can provide further
improvements in performance when used in combination.
Temporally shifted gated acquisition: Fast-gated detec-
tors [6] have been used previously for range-gated LiDAR,
confocal microscopy and non-line-of-sight (NLOS) imag-
ing [7] to preselect a specific depth range and suppress
undesirable early-arriving photons. A sequence of shifted
SPAD gates has been used in FLIM for improving temporal
resolution and dynamic range [34, 31, 32] and for extend-
ing the unambiguous depth range of pulsed LiDARs [29].
In contrast, we use shifting to mitigate pileup and present a
theoretically optimal method for choosing the sequence of
shifts and durations of the SPAD measurement gates with-
out any prior knowledge of scene depths.
Photon-driven acquisition: The photon-driven (or free-
running) mode of operation has been analyzed for
FLIM [16, 9, 1], and recently for LiDAR [28] where a
Markov chain model-based iterative optimization algorithm
is proposed to recover the incident waveform from the dis-
torted histogram. The focus of these approaches is on de-
signing efficient waveform estimation algorithms. Our goal
is different. We explore the space of asynchronous acqui-
sition schemes with the aim of designing acquisition strate-
gies that mitigate depth errors due to pileup in high ambient
light under practical constraints such as a fixed time budget.
We also propose a generalized closed-form maximum like-
lihood estimator (MLE) for asynchronous acquisition that
can be computed without any iterative optimization routine.

3. Single-Photon 3D Imaging Model
A SPAD-based 3D camera consists of a pulsed laser that

emits short periodic pulses of light toward a scene point,
and a co-located SPAD sensor that captures the reflected
photons (Fig. 1(c)). Although the incident photon flux is a
continuously varying function of time, a SPAD has limited
time resolution, resulting in a discrete sampling of the con-
tinuous waveform. Let ∆ denote the size of each discrete
temporal bin (usually on the order of few tens of picosec-
onds). Assuming an ideal laser pulse modeled as a Dirac-

1Note that attenuation blocks both ambient and source photons. Atten-
uation can be achieved through various methods such as spectral filtering,
neutral density filtering or using an aperture stop.

delta function δ(t), the number of photons incident on the
SPAD in the ith time bin follows a Poisson distribution with
a mean given by:

ri = Φsigδi,τ + Φbkg , (1)

where δi,j is the Kronecker delta,2 τ = b2z/c∆c is the dis-
cretized round-trip time delay, z is the distance of the scene
point from the camera, and c is the speed of light. Φsig is
the mean number of signal photons (due to the laser pulse)
received per bin, and Φbkg is the (undesirable) background
and dark count photon flux per bin. B is the number of time
bins in a single laser period. The vector (ri)

B
i=1 denotes the

incident photon flux waveform. A reliable estimate of this
waveform is needed to estimate scene depth.
Synchronous acquisition: In order to estimate the in-
cident waveform, SPAD-based 3D cameras employ the
principle of time-correlated single-photon counting (TC-
SPC) [21, 17, 2, 26, 24, 25]. In conventional synchronous
acquisition, the SPAD starts acquiring photons immediately
after the laser pulse is transmitted, as shown in Fig. 2(a).
In each laser cycle (laser repetition period), after detect-
ing the first incident photon, the SPAD enters a dead time
(∼100 ns) during which it cannot detect additional photons.
The SPAD may remain inactive for longer than the dead
time so that the next SPAD acquisition window aligns with
the next laser cycle.3 The time of arrival of the first inci-
dent photon is recorded with respect to the start of the most
recent cycle. A histogram (N1,. . . ,NB) of the first pho-
ton arrival times is constructed over many cycles, where Ni
denotes the number of times the first photon arrives in the
ith bin. In low ambient light, the histogram, on average, is
simply a scaled version of the incident waveform [13], from
which, depth can be estimated by locating its peak.
Effect of ambient light in synchronous acquisition: Un-
der ambient light, the incident flux waveform can be mod-
eled as an impulse with a constant d.c. offset, as shown in
the top of Fig. 2(b). In high ambient flux, the SPAD detects
an ambient photon in the earlier histogram bins with high
probability. This skews the measured histogram towards
earlier histogram bins, as shown in the bottom of Fig. 2(b).
The peak due to the laser source appears only as a small
blip in the exponentially decaying tail of the measured his-
togram. This distortion, called photon pileup [8, 2, 25], sig-
nificantly lowers the accuracy of depth estimates.

In the next two sections we introduce a generalization
of the synchronous TCSPC acquisition scheme, and show
how it can be used to mitigate pileup distortion and reliably
estimate depths, even in the presence of high ambient light.

2δi,j = 1 for i = j and 0 otherwise.
3The laser repetition period is set to 2zmax/c, where zmax is the unam-

biguous depth range. The photon flux is assumed to be 1-5% [33] of the
laser repetition rate so that the probability of detecting photons in consec-
utive laser cycles is negligible. In high ambient light, the dead time from
one cycle may extend into the next causing some cycles to be skipped.



4. Theory of Asynchronous Image Formation

In this section we develop a theoretical model for asyn-
chronous single-photon 3D cameras. We derive a histogram
formation model and a generalized Coates’s estimator [8]
for the incident photon flux waveform. In asynchronous
acquisition, we decouple the SPAD on/off times from the
laser cycles by allowing the SPAD acquisition windows to
have arbitrary start times with respect to the laser pulses
(Fig. 2(c)). A SPAD cycle is defined as the duration be-
tween two consecutive time instants when the SPAD sensor
is turned on. The SPAD will remain inactive during some
portion of each SPAD cycle due to its dead time.

Figure 3. Histogram formation for asynchronous aquisition.
(Top) The temporal location of the laser peak in the incident
waveform corresponds to the round-trip time-of-flight. A slightly
longer SPAD cycle period results in a sequence of increasing shifts
with respect to the laser cycles. (Bottom) The histogram for-
mation process involves computational resynchronization of pho-
ton arrival times to the laser cycle boundaries, causing a “wrap
around.” The measured histogram approaches the true waveform
shape when a large number of uniformly spaced shifts is used.

Each laser cycle consists of B time bins which are used
to build a photon count histogram. The bin indices are
defined with respect to the start of the laser cycle, i.e.,
the first time bin is aligned with the transmission of each
laser pulse. We assume that the laser repetition period is
B∆ = 2zmax/c. This ensures that a photon detected by the
SPAD always corresponds to an unambiguous depth range
[0, zmax). Let sl (0 ≤ sl ≤ B−1) denote the bin index (with
respect to the most recent laser cycle) at which the SPAD
gate is activated during the lth SPAD cycle (1 ≤ l ≤ L).
As shown in Fig. 3(top), a SPAD cycle may extend over
multiple consecutive laser cycles.

Probability distribution of measured histogram: Due to
Poisson statistics, the probability qi that at least one photon

is incident on the SPAD in the ith bin is:

qi = 1− e−ri , (2)

where ri is given by Eq. (1). A photon detection in the ith

time bin occurs when no photon is incident in the time bins
preceding the ith bin in the current cycle, and at least one
photon is incident in the ith bin. The probability pl,i of a
photon detection in the ith bin in the lth SPAD cycle depends
on the shift sl, and is given by:

pl,i = qi
∏
j:j<i

(1− qj) , (3)

where it is understood (see Supplementary Note 1) that j <
i denotes the bin indexes preceding the ith bin in a modulo-
B sense with a “wrap around” depending on the shift sl
(Fig. 3(bottom)). We introduce an additional (B+1)th bin
in the histogram to record the number of cycles where no
photons were detected, with corresponding bin probability
pl,B+1 :=1−

∑B
i=1 pl,i.

As in the synchronous case, we construct a histogram
of the number of photons detected in each time bin.
Let Ni be the number of photons captured in the ith

bin over L SPAD cycles. As shown in Supplemen-
tary Note 1, the joint distribution of the measured his-
togram (N1, N2, . . . , NB , NB+1) is given by a Poisson-
Multinomial Distribution (PMD) [10]. The PMD is a gener-
alization of the multinomial distribution; if sl = 0 ∀ l (con-
ventional synchronous operation), this reduces to a multi-
nomial distribution [14, 25].
Characterizing pileup in asynchronous operation: Sim-
ilar to the synchronous case, in the low incident flux regime
(ri � 1∀ i) the measured histogram is, on average, a lin-
early scaled version of the incident flux: E[Ni] ≈ Lri, and
the incident flux can be estimated as r̂i = Ni/L. However,
in high ambient light, the photon detection probability at a
specific histogram bin depends on its position with respect
to the beginning of the SPAD cycle. Similar to synchronous
acquisition, histogram bins that are farther away from the
start of the SPAD cycle record photons with exponentially
smaller probabilities compared to those near the start of the
cycle. However, unlike the synchronous case, the shape of
this pileup distortion wraps around at the Bth histogram bin
during computational resynchronization. This is shown in
Fig. 3(bottom). The segment that is wrapped around de-
pends on sl and may vary with each SPAD cycle.
Computational pileup correction in asynchronous ac-
quisition: A computational pileup correction algorithm
must use the histogram (Ni)

B+1
i=1 to estimate the true wave-

form ri via an estimate of qi and Eq. (2). Recall that a
photon detection in a specific histogram bin prevents subse-
quent bins from recording a photon. Therefore, in the high
flux regime, qi cannot be simply estimated as the ratio ofNi
to the number of SPAD cycles (L); the denominator in this



ratio must account for the number of SPAD cycles where
the ith histogram bin had an opportunity to record a photon.

Definition 1 (Denominator Sequence). Let Dl,i be an in-
dicator random variable which is 1 if, in the lth SPAD cycle,
no photon was detected before the ith time bin. The denom-
inator sequence (Di)

B
i=1 is defined as Di =

∑L
l=1Dl,i.

Note that Dl,i = 1 indicates that in the lth SPAD cy-
cle, the SPAD had an opportunity to detect a photon in the
ith bin. By summing over all SPAD cycles, Di denotes the
total number of photon detection opportunities in the ith his-
togram bin. Using this corrected denominator, an estimate
for qi is obtained as follows:

q̂i =
Ni
Di

.

We show in Supplementary Note 1 that q̂i is in fact the MLE
of qi. The MLE of the incident flux waveform is given by:

r̂i = ln

(
1

1− q̂i

)
(4)

which is a generalization of the Coates’s estimator [8, 25].
Photon pileup causes later histogram bins to have Di ≈ 0
making it difficult to estimate ri. Intuitively, a larger Di

denotes more “information” in the ith bin, hence a more re-
liable estimate of the true flux waveform can be obtained.

5. Photon Pileup: Prevention Better than Cure?
In theory, when operating in high ambient light, the gen-

eralized Coates’s estimator in Eq. (4) can invert pileup dis-
tortion for asynchronous acquisition with any given set of
shifts sl. However, if the asynchronous acquisition scheme
is not well-designed, this inversion will lead to unreliable
waveform estimates. For example, if the shifts sl are all
zero (synchronous acquisition), bins farther from the start
of the SPAD cycle will have Di ≈ 0 and suffer from ex-
tremely noisy flux estimates.

In this section, we design imaging techniques that pre-
vent photon pileup in the acquisition phase itself, even un-
der high ambient light. Our main observation is that delay-
ing the start of the SPAD cycle with respect to the start of
a laser cycle increases Di at later time bins. The key idea,
as shown in Fig. 3, is to cycle through various shifts sl for
different SPAD cycles. This ensures that each time bin is
close to the start in at least a few SPAD cycles. Intuitively,
if all possible shifts from 0 toB−1 are used, the effect of the
exponentially decaying pileup due to ambient photons gets
distributed over all histogram bins equally. On the other
hand, returning signal photons from the true laser peak add
up “coherently” because their bin location remains fixed.
As a result, the accumulated histogram has enough photons
in all bins (Fig. 3(e)) to enable reliable Coates’s estimates.

Figure 4. Simulated depth RMSE at different ambient and
signal flux levels. Asynchronous acquisition with uniform shift-
ing achieves lower error than synchronous acquisition with no and
extreme attenuation [13], over a wide range of flux conditions.

We characterize the space of all shifting strategies by
their shift sequence, (si)

L
i=1. For now, we only consider

deterministic shift sequences, which means that the shifts
are fixed and known prior to acquisition. Given these defi-
nitions, the question that we seek to address is: What is the
optimal shifting strategy that minimizes depth estimation
error? We now present two key theoretical results towards
answering this question for a SPAD-based 3D camera oper-
ating in the high ambient flux regime where the total number
of incident photons is dominated by ambient photons.4

Definition 2 (Uniform Shifting). A shifting strategy is said
to be uniform if its shift sequence is a uniform partition of
the time interval [0, B∆), i.e., is a permutation of the se-
quence (0, bB/Lc, b2B/Lc, ..., b(L−1)B/Lc).

Result 1 (Denominator Sequence and Probability of
Depth Error). In the high ambient flux regime, among
all denominator sequences with a fixed total expected sum∑L
i=1 E[Di], an upper bound on the average probability of

depth error for the estimator in Eq. (4) is minimized when
E[Di] = E[Dj ]∀ i, j.

Result 2 (Denominator Sequence for Uniform Shifting).
Uniform shifting achieves a constant expected denominator
sequence.

Interpreting Results 1 and 2: As shown in Supplemen-
tary Note 2, for a fixed L, different shift sequences will lead
to different denominator sequences but the total expected
denominator

∑L
i=1 E[Di] remains constant. The first re-

sult (based on [13]) shows that if a shifting strategy can
achieve a constant expected denominator sequence, it will
have lower depth error than all other shifting strategies (in-
cluding synchronous acquisition). The second result shows
that there exists a shifting strategy that achieves a constant
expected denominator: uniform shifting. As a byproduct, a
uniform denominator sequence makes the depth errors in-
variant to the true bin location, unlike the synchronous case
where later time bins suffer from higher depth errors.

4We define signal-to-background-ratio SBR = Φsig/BΦbkg. In the
high ambient flux regime, SBR� 1.



Figure 5. Different asynchronous acquisition methods. (a) The
incident waveform has a period equal to the laser cycle period. (b)
Uniform shifting staggers the laser and SPAD cycles by introduc-
ing a mismatch in cycle lengths. (c) Optimizing the SPAD active
time enables more SPAD cycles to fit within a fixed total capture
time. (d) Photon-driven shifting has random SPAD cycle lengths
determined by photon detection events.

Single-pixel simulations: We compare the performance of
uniform shifting and conventional synchronous acquisition
through Monte Carlo simulations.5 We use a histogram with
B = 1000 and ∆ = 100 ps and consider a wide range
of background and signal photon flux levels in the discrete
delta pulse model of Eq. (1). Uniform shifts are simulated
by choosing equally spaced shifts between 0 and 1000 and
generating photon counts using Eq. (S3). Depth is esti-
mated using the generalized estimator (Eq. (4)). As seen
in Fig. 4, the depth RMSE with uniform shifting is consid-
erably lower than conventional synchronous acquisition. At
certain combinations of signal and background flux levels,
uniform shifting estimates depths with almost zero RMSE
while the conventional methods give a very high error.

6. Practically Optimal Acquisition for Single-
Photon 3D Imaging in Bright Sunlight

The theoretical analysis in the previous section shows
uniform shifting minimizes an upper bound on the `0 depth
error. It is natural to ask: How can we implement practical
uniform shifting approaches that are not just theoretically
optimal in the `0 sense, but also achieve good RMSE (`2
error) performance under realistic constraints and limited
acquisition time? In this section, we design several high-
performance shifting schemes based on uniform shifting.
These are summarized in Fig. 5.

Uniform shifting can be implemented in practice by
making the SPAD cycle period longer than the laser cycle
(Fig. 5(b)), and relying on this mismatch to automatically
cycle through all possible shifts. Moreover, this can be im-
plemented at a negligible additional cost in terms of total
acquisition time as shown in Supplementary Note 3.

6.1. SPAD Active Time Optimization
So far, we have assumed the SPAD active time duration

is fixed and equal to B∆. Programmable fast-gated SPAD
5 The maximum possible relative RMSE is 30% because it is defined

in a modulo-B sense. See Supplementary Note 8.

Figure 6. Effect of SPAD active time on performance. This
plot shows the improvement in RMSE from SPAD active time
optimization at different signal strengths and dead times. Note
that the RMSE gain (size of vertical arrows) due to uniform shift-
ing over synchronous acquisition remains unchanged across dead
times. For low flux levels and long dead times, a longer active time
improves RMSE by enabling the SPAD to capture more photons.

detectors [6, 5] allow flexibility in choosing different active
time and SPAD cycle durations (Fig. 5(c)). Arbitrary shift
sequences can also be implemented by varying the number
of active time bins, m, while keeping the inactive duration
fixed at td. This expands the space of shifting strategies
characterized by the active time bins, m, and the shift se-
quence, (sl)

L
l=1. Under a fixed acquisition time constraint:

L(m∆ + td) ≤ T. (5)

Note that L can now vary with m. Can this greater design
flexibility be used to improve depth estimates?

Varying m leads to an interesting trade-off. Shortening
the active time duration causes a larger proportion of each
SPAD cycle to be taken up by dead time. On the other hand,
using a very long active time is inefficient because the por-
tion of the active time after the first photon arrival is spent
in dead time anyway. This raises the question: What is the
optimal active time that minimizes the depth error? In Sup-
plementary Note 4 we show that the optimal active time for
uniform shifting is given by:

mopt = arg max
m

T

m∆ + td

1− e−mΦbkg

1− e−Φbkg
. (6)

Simulation results for varying active time: Fig. 6 shows
plots of depth RMSE vs. m for a wide range of ambient
flux levels and two different values of dead time. Observe
that the RMSE curves have local minima which agree with
our theory (Eq. (6)). For a wide range of photon flux lev-
els considered here, mopt is shorter than the conventionally
used active time of m = B = 1000 and gives a remarkable
improvement in RMSE by up to a factor of 6.

6.2. Photon-Driven Shifting
The optimal active time criterion balances the tradeoff

between short and long active time windows in an aver-



Figure 7. Simulation-based evaluation of practically optimal
asynchronous acquisition. (a) Asynchronous acquisition with
optimal SPAD active time (Section 6.1) provides an order of mag-
nitude lower depth RMSE as compared to existing methods. (b)
Photon-driven shifting (Section 6.2) further lowers RMSE by al-
lowing the active time to vary stochastically on a per-photon basis.

age sense. However, due to the large variance in the ar-
rival time of the first photon in each cycle, a fixed m cannot
achieve both these goals on a per-photon basis. It is possible
to achieve photon-adaptive active time durations using the
free-running mode [28] where the SPAD is always active,
except after a photon detection when it enters a dead time.

In the free-running mode the active times and SPAD cy-
cle durations vary randomly due to the stochastic nature of
photon arrivals. As shown in Fig. 5(d), this creates differ-
ent shifts across different SPAD cycles. Over a sufficiently
long acquisition time, a uniformly spaced sequence of shifts
is achieved with high probability, distributing the effect of
pileup over all histogram bins uniformly. We call this ran-
domized shifting phenomenon photon-driven shifting.

Depth estimator for photon-driven shifting: Unlike de-
terministic shifting, the shift sequence in photon-driven
shifting is stochastic because it depends on the random pho-
ton arrival times. In Supplementary Note 5 we show that
the scene depths can still be estimated using the generalized
Coates’s estimator (Eq. (4)) as before6.

The following result states that photon-driving shifting
possesses the desirable property of providing a uniform
shift sequence. See Supplementary Note 5 for a proof.

Result 3. As L → ∞, photon-driven shifting achieves a
uniform shift sequence.

Result 3 says that photon-driven shifting exhibits a
pileup averaging effect, similar to uniform shifting. Al-
though this does not establish a relationship between the
shift sequence and depth RMSE, our results show up to
an order of magnitude improvement in RMSE compared to
conventional synchronous acquisition.7

Simulation results: Fig. 7 shows simulated RMSE results
for photon-driven shifting over a wide range of signal and

6Note that the joint distribution of (Ni)
L
i=1 derived in Section 4 does

not hold for photon-driven shifting because the shift sequence is random.
7Proving exact uniformity of the shift sequence requires assumingL→

∞, although in practice, we found that L ≤ 50 SPAD cycles is sufficient.

Figure 8. Optimal attenuation factor Υopt for photon-driven
shifting is higher than that of synchronous acquisition, leading to
efficient flux utilization, while minimizing photon pileup.

ambient flux levels. For some flux levels the proposed shift-
ing methods provide almost zero depth error while the con-
ventional method has the maximum possible error. The
RMSE of photon-driven shifting is similar to uniform shift-
ing with mopt, but for some flux levels it can provide a fac-
tor of 2 improvement over uniform shifting. Supplementary
Note 6 discusses certain regimes where deterministic shift-
ing may be preferable over photon-driven shifting.

6.3. Combination with Flux Attenuation

Recent work [13, 14] has shown that there is an opti-
mal incident flux level at which pileup in a synchronous
SPAD-based 3D camera is minimized while maintaining
high SNR. This optimal flux can be achieved by optically
attenuating the incident photon flux. In the space of acqui-
sition strategies to deal with pileup, attenuation can be con-
sidered a complementary approach to asynchronous shift-
ing. In Supplementary Note 7, we show that the optimal
attenuation fraction for photon-driven shifting is given by:

Υopt
photon-driven = min

{
1.0, arg min

Υ

1 + td(1− e−ΥΦbkg)

e−ΥΦbkg(1− e−ΥΦsig)

}
.

Fig. 8 shows simulation results of depth RMSE for the
conventional synchronous mode and photon-driven shifting
over a range of attenuation factors and two different dead
times. The locations of the minima agree with our theory.
There are two key observations. First, the optimal atten-
uation fraction with shifting is much higher than that for
conventional synchronous acquisition. Second, combining
attenuation with photon-driven shifting can provide a large
gain in depth error performance, reducing the RMSE to al-
most zero under certain conditions.

7. Experiments
Our hardware prototype consists of a 405 nm pulsed

laser (Picoquant LDH-P-C-405B), a TCSPC module (Pico-
quant HydraHarp 400) and a fast-gated SPAD [6] that can
be operated in both triggered and free-running modes and



Figure 9. Experimental demonstration of single-photon 3D imaging under strong ambient light. A white “PorcelainFace” vase was
illuminated with high ambient light of BΦbkg = 11 photons and scanned with a low-power laser at an SBR of 0.02. The proposed
asynchronous acquisition schemes achieve considerably higher depth quality as compared to conventional synchronous methods.

Figure 10. Adaptivity of photon-driven shifting to different albedos. The black vase in this “Vases” scene has 1/10th the reflectivity of
the white vase. With synchronous acquisition, the attenuation fraction must be adjusted individually for each vase. In contrast, both vases
are reliably reconstructed with photon-driven shifting which automatically adapts the active time duration for each pixel.

has a programmable dead time which was set to 50 ns. We
operated the laser at a repetition frequency of 10 MHz for an
unambiguous depth range of 15 m discretized into 1000 his-
togram bins. For uniform shifting, we operated the SPAD
with its internal clock to obtain shifts between the SPAD
measurement windows and the laser cycles.

3D point-scanning results: Fig. 9 shows 3D recon-
structions of “PorcelainFace” scene under high ambient
illumination. Both uniform and photon-driven shifting
(Υopt

photon-driven = 1) perform better than synchronous acqui-
sition methods. Photon-driven acquisition provides sub-
centimeter RMSE, which is an order of magnitude better
than the state-of-the-art extreme attenuation method.

The method of [13] uses synchronous acquisition and re-
lies on setting an attenuation factor for different parts of
the scene based on the total photon flux and hence requires
pixel-wise adaptation. The “Vases” scene in Fig. 10 consists
of a black vase with a much lower albedo than the white
vase. The attenuation fraction needed for the white vase is
too low and causes the black vase to appear noisy, whereas
the attenuation fraction for the black vase is too high to
avoid pileup distortions at the white vase. The average ac-
tive time with photon-driven shifting (Υopt

photon-driven = 1) au-

tomatically adapts to different photon flux levels and reli-
ably captures the depth map for both vases. For darker scene
points the average active time is longer than the laser cycle
period of B = 1000.

8. Limitations and Discussion

Incorporating spatial priors: The theoretical analysis and
results presented here are limited to a pixel-wise depth esti-
mator which uses the MLE of the photon flux waveform.
Further improvements can be obtained by incorporating
spatial priors in a regularized optimization framework [14],
or data-driven neural network-based approaches [19] that
exploit spatial correlations between neighboring pixels and
across different training images to improve depth accuracy.
Extension to other active-imaging modalities: The idea
of using asynchronous acquisition schemes can be extended
to other SPAD-based active-imaging applications that use
the principle of TCSPC to recover the true shape of the pho-
ton flux waveform. Non-uniform shifting schemes may be
required for time-domain FLIM where true waveform shape
is an exponential decay and NLOS imaging where the pho-
ton flux waveform can have arbitrary shapes.



References
[1] Giulia Acconcia, Alessandro Cominelli, Massimo Ghioni,

and Ivan Rech. Fast fully-integrated front-end circuit to over-
come pile-up limits in time-correlated single photon count-
ing with single photon avalanche diodes. Opt. Express,
26(12):15398–15410, Jun 2018. 2, 3

[2] Wolfgang Becker. Advanced time-correlated single photon
counting applications, volume 111. Springer, 2015. 3

[3] Maik Beer, Jan Haase, Jennifer Ruskowski, and Rainer
Kokozinski. Background light rejection in spad-based lidar
sensors by adaptive photon coincidence detection. Sensors,
18(12):4338, Dec 2018. 2, 3

[4] Claudio Bruschini, Harald Homulle, Ivan Michel Antolovic,
Samuel Burri, and Edoardo Charbon. Single-photon spad
imagers in biophotonics: Review and outlook. arXiv
preprint, 2019. 1

[5] Samuel Burri, Yuki Maruyama, Xavier Michalet, Francesco
Regazzoni, Claudio Bruschini, and Edoardo Charbon. Ar-
chitecture and applications of a high resolution gated SPAD
image sensor. Optics Express, 22(14):17573, Jul 2014. 6

[6] Mauro Buttafava, Gianluca Boso, Alessandro Ruggeri, Al-
berto Dalla Mora, and Alberto Tosi. Time-gated single-
photon detection module with 110 ps transition time and up
to 80 mhz repetition rate. Review of Scientific Instruments,
85(8):083114, 2014. 3, 6, 7

[7] Mauro Buttafava, Jessica Zeman, Alberto Tosi, Kevin Eli-
ceiri, and Andreas Velten. Non-line-of-sight imaging using
a time-gated single photon avalanche diode. Optics express,
23(16):20997–21011, 2015. 1, 3

[8] P. B. Coates. The correction for photon ‘pile-up’ in the mea-
surement of radiative lifetimes. Journal of Physics E: Scien-
tific Instruments, 1(8):878, 1968. 3, 4, 5

[9] Alessandro Cominelli, Giulia Acconcia, Pietro Peronio,
Massimo Ghioni, and Ivan Rech. High-speed and low-
distortion solution for time-correlated single photon count-
ing measurements: A theoretical analysis. Review of Scien-
tific Instruments, 88(12):123701, Dec 2017. 2, 3

[10] Constantinos Daskalakis, Gautam Kamath, and Christos
Tzamos. On the structure, covering, and learning of pois-
son multinomial distributions. arXiv preprint, 2015. 4

[11] Neale A. W. Dutton, Istvan Gyongy, Luca Parmesan, Sal-
vatore Gnecchi, Neil Calder, Bruce R. Rae, Sara Pellegrini,
Lindsay A. Grant, and Robert K. Henderson. A SPAD-
based QVGA image sensor for single-photon counting and
quanta imaging. IEEE Transactions on Electron Devices,
63(1):189–196, Jan 2016. 2

[12] Abhiram Gnanasambandam, Omar Elgendy, Jiaju Ma, and
Stanley H Chan. Megapixel photon-counting color imaging
using quanta image sensor. Optics Express, 27(12):17298–
17310, 2019. 2

[13] Anant Gupta, Atul Ingle, Andreas Velten, and Mohit Gupta.
Photon-flooded single-photon 3d cameras. In Proceedings of
the IEEE CVPR, pages 6770–6779, 2019. 3, 5, 7, 8

[14] Felix Heide, Steven Diamond, David Lindell, and Gordon
Wetzstein. Sub-picosecond photon-efficient 3d imaging us-
ing single-photon sensors. Scientific Reports, 8(1), Dec
2018. 2, 3, 4, 7, 8

[15] Atul Ingle, Andreas Velten, and Mohit Gupta. High flux pas-
sive imaging with single photon sensors. In Proc. CVPR,
June 2019. 1

[16] Sebastian Isbaner, Narain Karedla, Daja Ruhlandt, Si-
mon Christoph Stein, Anna Chizhik, Ingo Gregor, and Jörg
Enderlein. Dead-time correction of fluorescence lifetime
measurements and fluorescence lifetime imaging. Optics ex-
press, 24(9):9429–9445, 2016. 3

[17] Peter Kapusta, Michael Wahl, and Rainer Erdmann. Ad-
vanced Photon Counting Applications, Methods, Instrumen-
tation. Springer Series on Fluorescence, 15, 2015. 2, 3

[18] Myung-Jae Lee and Edoardo Charbon. Progress in single-
photon avalanche diode image sensors in standard cmos:
From two-dimensional monolithic to three-dimensional-
stacked technology. Japanese Journal of Applied Physics,
57(10):1002A3, 2018. 2

[19] David Lindell, Matthew O’Toole, and Gordon Wetzstein.
Single-Photon 3D Imaging with Deep Sensor Fusion. ACM
Trans. Graph. (SIGGRAPH), 37(4), 2018. 2, 8

[20] Jiaju Ma, Saleh Masoodian, Dakota A Starkey, and Eric R
Fossum. Photon-number-resolving megapixel image sen-
sor at room temperature without avalanche gain. Optica,
4(12):1474–1481, 2017. 2

[21] Matthew O’Toole, Felix Heide, David Lindell, Kai Zang,
Steven Diamond, and Gordon Wetzstein. Reconstructing
transient images from single-photon sensors. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2289–2297, July 2017. 3

[22] Matthew O’Toole, David B. Lindell, and Gordon Wetzstein.
Confocal non-line-of-sight imaging based on the light-cone
transform. Nature, 555:338–341, Mar 2018. 1

[23] Matthias Patting, Paja Reisch, Marcus Sackrow, Rhys
Dowler, Marcelle Koenig, and Michael Wahl. Fluorescence
decay data analysis correcting for detector pulse pile-up at
very high count rates. Optical engineering, 57(3):031305,
2018. 2

[24] Agata M. Pawlikowska, Abderrahim Halimi, Robert A.
Lamb, and Gerald S. Buller. Single-photon three-
dimensional imaging at up to 10 kilometers range. Optics
Express, 25(10):11919, May 2017. 3

[25] Adithya K Pediredla, Aswin C Sankaranarayanan, Mauro
Buttafava, Alberto Tosi, and Ashok Veeraraghavan. Sig-
nal processing based pile-up compensation for gated single-
photon avalanche diodes. arXiv preprint arXiv:1806.07437,
2018. 2, 3, 4, 5

[26] Sara Pellegrini, Gerald S Buller, Jason M Smith, Andrew M
Wallace, and Sergio Cova. Laser-based distance measure-
ment using picosecond resolution time-correlated single-
photon counting. Measurement Science and Technology,
11(6):712, 2000. 3

[27] Joshua Rapp and Vivek Goyal. A few photons among
many: Unmixing signal and noise for photon-efficient ac-
tive imaging. IEEE Transactions on Computational Imaging,
3(3):445–459, Sept 2017. 2

[28] Joshua Rapp, Yanting Ma, Robin Dawson, and Vivek K
Goyal. Dead time compensation for high-flux ranging. arXiv
preprint arXiv:1810.11145, 2018. 2, 3, 7



[29] Daniel Reilly and Gregory Kanter. High speed lidar via GHz
gated photon detector and locked but unequal optical pulse
rates. Optics Express, 22(13):15718, jun 2014. 3

[30] Alexis Rochas. Single Photon Avalanche Diodes in CMOS
Technology. PhD thesis, EPFL, 2003. 1

[31] Alberto Tosi, Alberto Dalla Mora, Franco Zappa, Angelo
Gulinatti, Davide Contini, Antonio Pifferi, Lorenzo Spinelli,
Alessandro Torricelli, and Rinaldo Cubeddu. Fast-gated
single-photon counting technique widens dynamic range and
speeds up acquisition time in time-resolved measurements.
Optics Express, 19(11):10735, May 2011. 3

[32] Arin Can Ulku, Claudio Bruschini, Ivan Michel Antolovic,
Yung Kuo, Rinat Ankri, Shimon Weiss, Xavier Michalet, and
Edoardo Charbon. A 512x512 spad image sensor with inte-
gratedgating for widefield flim. IEEE Journal of Selected
Topics in Quantum Electronics, 25(1):1–12, Jan 2019. 2, 3

[33] Michael Wahl. Time-Correlated Single Photon Counting,
2016. 3

[34] Xue Feng Wang, Teruo Uchida, David M. Coleman, and Shi-
geo Minami. A two-dimensional fluorescence lifetime imag-
ing system using a gated image intensifier. Applied Spec-
troscopy, 45(3):360–366, mar 1991. 3

[35] Chao Zhang, Scott Lindner, Ivan Antolovic, Martin Wolf,
and Edoardo Charbon. A CMOS SPAD Imager with Col-
lision Detection and 128 Dynamically Reallocating TDCs
for Single-Photon Counting and 3D Time-of-Flight Imaging.
Sensors, 18(11):4016, Nov 2018. 3



Supplementary Document for
“Asynchronous Single-Photon 3D Imaging”

Anant Gupta, Atul Ingle, Mohit Gupta.

{anant,ingle,mohitg}@cs.wisc.edu

Supplementary Note 1. Asynchronous Image Formation Model and MLE Waveform Estimator

In this supplementary note we derive the Poisson-Multinomial histogram model of Eq. (S3) in the main paper. We then
derive the generalized Coates’s estimator (Eq. (4)), which is the maximum likelihood estimator (MLE) of the photon flux
waveform in asynchronous acquisition. Scene depth is computed by locating the peak of the estimated photon flux waveform.

Joint Distribution of Measured Histogram

Here we derive the joint distribution of the histogram (N1, . . . , NB , NB+1) measured in the asynchronous acquisition
mode. Recall that the B + 1st bin is added for mathematical convenience to record SPAD cycles with no detected photons.
For the lth SPAD cycle we define a one-hot random vector (Ol,1, Ol,2, . . . , Ol,B , Ol,B+1) that stores the bin index where the
photon was recorded. Since the SPAD detects at most one photon per laser cycle, (Ol,i)

B+1
i=1 contains zeroes everywhere

except at the bin index corresponding to the photon detection. Its joint distribution is given by a categorical distribution
[Suppl. Ref. 1]:

(Ol,i)
B+1
i=1 ∼ (B+1)-Categorical

(
(pl,i)

B+1
i=1

)
. (S1)

The final histogram of photon counts is obtained by summing these one-hot vectors over all laser cycles:

Ni =

L∑
l=1

Ol,i . (S2)

SinceNi is a sum ofL different (B+1)-Categorical random variables, the joint distribution is given by a Poisson-Multinomial
Distribution [Suppl. Ref. 2]:

(Ni)
B+1
i=1 ∼ (L,B+1)-PMD

(
(pl,i)1≤l≤L,1≤i≤B+1

)
. (S3)

The expected number of photon counts E[Ni] in the ith bin is
∑L
l=1 pl,i. Note that in the synchronous case, this reduces to a

multinomial distribution because the one-hot random vector defined here no longer depends on the SPAD cycle index l.

Derivation of the Generalized Coates’s Estimator for Asynchronous SPAD LiDAR (Eq. (4))

In this section, we derive the MLE (r̂i)
B
i=1 of the true waveform (ri)

B
i=1 for the asynchronous acquisition model and

show that it is equal to the generalized Coates’s estimator described in the main text. We assume that for each SPAD cycle
1 ≤ l ≤ L, the TCSPC system stores one-hot random vectors (Ol,i)1≤i≤B+1.

For future reference, we define Jl,i to be the set of bin indices preceding i in the lth cycle, in a modulo-B sense8:

Jl,i=


{sl+1, . . . , B, 1︸︷︷︸

wrap around

,. . . , i−1}, for i ≤ sl

{sl+1, . . . , i−1}, for i > sl .

(S4)

In the lth laser cycle, the joint distribution of (Ol,i)
B+1
i=1 is given by the categorical distribution in Eq. (S1). Therefore, the

likelihood function of the photon incidence probabilities (qi)
B
i=1 is given by:

8For example, suppose B=8 and sl =3. Then, Jl,7 ={4, 5, 6}, and Jl,2 ={4, 5, 6, 7, 8, 1}.



L(q1, q2, ..., qB) = P
(
(O1,i)

B+1
i=1 , (O2,i)

B+1
i=1 , ..., (OL,i)

B+1
i=1 |q1, q2, ..., qB

)
(a)
=

L∏
l=1

P
(
(Ol,i)

B+1
i=1 |q1, q2, ..., qB

)
(b)
=

L∏
l=1

B+1∏
i=1

p
Ol,i
l,i

(c)
=

L∏
l=1

B+1∏
i=1

qi ∏
j∈Jl,i

(1− qj)

Ol,i

(d)
=

B+1∏
i=1

q
∑L
l=1 Ol,i

i

 L∏
l=1

B+1∏
i=1

B+1∏
j=1

(1− qj)1(j∈Jl,i)

Ol,i


(e)
=

B+1∏
i=1

qNii

B+1∏
j=1

L∏
l=1

(1− qj)
∑B+1
i=1 1(j∈Jl,i)Ol,i

(f)
=

B+1∏
i=1

qNii

B+1∏
j=1

L∏
l=1

(1− qj)Dl,j−Ol,j

(g)
=

B+1∏
i=1

qNii (1− qi)Di−Ni (S5)

where (a) holds because measurements in different cycles are conditionally independent given the shift sequence; (b) follows
from the definition of categorical distribution and the fact that for any fixed l, Ol,i = 1 for exactly one 1 ≤ i ≤ B + 1; (c)
follows from Eq. (3); (d) uses the notation 1 for the indicator function; (e) uses the definition of Ni from Eq. (S2); (f) follows
from the lemma proved below; (g) follows from Eq. (S2) and Def. 1 and rearrangement of the terms in the preceding product.

Since the likelihood is factorizable in qi, we can calculate the MLE element-wise as:

q̂i = arg max
qi

qNii (1− qi)Di−Ni

=
Ni
Di
.

Since qi = 1−e−ri , by the functional invariance property of the MLE [Suppl. Ref. 4], the MLE for the photon flux waveform
ri is given by the generalized Coates’s estimator of Eq. (4). We estimate scene depth by locating the peak of the estimated
waveform: τ̂ = arg maxi r̂i.

Finally, we prove the following lemma that was used in step (f) in the derivation above.

Lemma (Proof of step (f)). For 1 ≤ j ≤ B + 1 and 1 ≤ l ≤ L

B+1∑
i=1

1(j ∈ Jl,i)Ol,i = Dl,j −Ol,j

Proof. Let i∗ denote the bin index where the photon was detected in the lth SPAD cycle, i.e., Ol,k = 1 iff k = i∗ and 0
otherwise. Then:

B+1∑
i=1

1(j ∈ Jl,i)Ol,i = 1(j ∈ Jl,i∗)Ol,i∗ .

If j = i∗, then by definition j 6∈ Jl,i∗ . Therefore, LHS = 0. Also, Dl,j = Ol,j = 1 in this case, so RHS = 0. If j 6= i∗,
there are two cases. Case 1: j ∈ Jl,i∗ . Then Dl,j = 1 and Ol,j = 0. Therefore, LHS = RHS = 1. Case 2: j 6∈ Jl,i∗ . Then
Dl,j = Ol,j = 0. Therefore, LHS = RHS = 0.



Supplementary Note 2. Proofs of Results 1 and 2
In this section we provide detailed mathematical proofs for two key theoretical results in the main paper. Recall that we use

an upper bound on the probability of depth error (`0 error) as a surrogate for RMSE. Result 1 establishes the importance of a
constant expected denominator sequence. It shows that a shifting strategy that minimizes an upper bound on the `0 error must
have a denominator sequence that is constant (on average) for all histogram bins. Result 2 shows that the uniform shifting
strategy (which allocates approximately equal number of shifts to all histogram bins over whole depth range) achieves a
constant expected denominator sequence.

Proof of Result 1
In this section, we will derive an upper bound on `0 depth error which corresponds to the probability that the depth estimate

using the generalized Coates’s estimator derived in Supplementary Note 1 is different from the true depth bin.

An upper bound on `0 error: To ensure that the depth estimate τ̂ is correct, the bin corresponding to the true depth should
have the highest counts after the generalized Coates’s correction (Eq. (4)) is applied. Therefore, for a given true depth τ , we
want to minimize the probability of depth error:

P(τ̂ 6= τ) = P

⋃
i 6=τ

(q̂i > q̂τ )


≤
∑
i 6=τ

P (q̂i > q̂τ )

=
∑
i 6=τ

P (q̂i − q̂τ > 0)

where the first inequality follows from the union bound. Note that q̂i− q̂τ has a mean qi−qτ and variance σ2
i +σ2

τ (assuming
uncorrelated). The variance is given by [Suppl. Ref. 3] σ2

i = qi(1−qi)
E[Di]

.

For large L, by the central limit theorem, we have:

q̂i − q̂τ ∼ N (qi − qτ , σ2
i + σ2

τ ).

Using the Chernoff bound for Gaussian random variables, we get:

P(q̂i > q̂τ ) ≤ exp

(
− (qi − qτ )2

2(σ2
i + σ2

τ )

)

=
1

2
exp

−1

2

(qi − qτ )2

qi(1−qi)
E[Di]

+ qτ (1−qτ )
E[Dτ ]


Assuming a uniform prior on τ over the entire depth range, we get the following upper bound on the average probability of
error:

1

B

B∑
τ=1

P(τ̂ 6= τ) ≤ 1

B

B∑
τ=1

∑
i6=τ

1

2
exp

−1

2

(qi − qτ )2

qi(1−qi)
E[Di]

+ qτ (1−qτ )
E[Dτ ]


≈ 1

B

B∑
i,τ=1

1

2
exp

−1

2

(qi − qτ )2

qi(1−qi)
E[Di]

+ qτ (1−qτ )
E[Dτ ]

 (S6)

We can minimize the probability of error indirectly by minimizing this upper bound. The upper bound involves exponential
quantities which will be dominated by the least negative exponent, which in turn is dominated by the index i with the largest
value of 1/E[Di]. Therefore, the denominator sequence that minimizes this upper bound must maximize mini E[Di]. Given
that the total expected denominator is constant under a fixed number of cycles (see proof below), this is equivalent to making
the denominator sequence uniform.

The above analysis assumes that photon detections across cycles are independent, and therefore holds for all acquisition
schemes with a gating mechanism that is fixed in advance, including synchronous and asynchronous acquisition (determinis-
tic). Note that it does not hold for photon-driven shifting, where a photon detection in one cycle can affect that in another.



Proof of constant total expected denominator: Let Ξ ≡
∑B
i=1 E[Di] be the total expected denominator. Assuming a

low SBR scenario where the background flux dominates the signal flux, we take ri ≈ Φbkg for all i, i.e., an almost uniform
incident waveform. To calculate the total denominator, we sum up the contributions of each cycle. If the SPAD active time
is m, each cycle ends with either a photon detection in one of the m time bins, or with no photon detections. A cycle with a
photon detection in the ith bin (1 ≤ i ≤ m) contributes i units to the total denominator, since each bin before and including
the detection bin was active. By the same argument, a cycle with no photon detections contributes m units. Therefore, the
total expected denominator is given by:

Ξ =

L∑
l=1

[
m∑
i=1

P(Ol,sl⊕i = 1) · i+ P(Ol,sl⊕i = 0 for 1 ≤ i ≤ m) ·m

]

=

L∑
l=1

 m∑
i=1

pl,sl⊕i · i+

1−
m∑
j=1

pl,sl⊕j

 ·m


(a)
=

L∑
l=1

[
m∑
i=1

(1− e−Φbkg)e−(i−1)Φbkg · i+ e−mΦbkg ·m

]

=
L(1− e−mΦbkg)

1− e−Φbkg
, (S7)

where ⊕ denotes addition modulo-B, and (a) follows from the fact that for a uniform waveform, pl,sl⊕i = (1 −
e−Φbkg)(e−Φbkg)|Jl,sl⊕i|. Moreover, Jl,sl⊕i = i − 1. Therefore, Ξ remains constant for a given L, regardless of the shift
sequence used.

Proof of Result 2
For 1 ≤ i ≤ B, under uniform shifting:

E[Di]
(a)
=

L∑
l=1

E[Dl,i]

=

L∑
l=1

∏
j∈Jl,i

(1− qj)

(b)
≈

L∑
l=1

∏
j∈Jl,i

e−Φbkg

=
L∑
l=1

e−Φbkg|Jl,i|

=

L∑
l=1

e−Φbkg{(i−sl) mod B}

(c)
=

L

B

(
B−1∑
i=0

e−iΦbkg

)

where (a) follows from Def. 1; (b) relies on the assumption that the pileup is mainly due to ambient light Φbkg and not the
source light Φsig; and (c) assumes that L is a multiple of B. The last step follows because under uniform shifting, the set of
shifts {sl}Ll=1 spans the discrete space {0, 1, ..., B − 1} uniformly. Moreover, the shifts remain uniform when transformed
by a constant modulo addition. Therefore, E[Di] is the sum of identical terms, and hence same for all i.

If L is not a multiple ofB, the shift sequence cannot achieve every possible shift from 0 toB−1 an equal number of times
and some bins might use more shifts than others, especially when L < B.However, the expected denominator sequence is
still approximately uniform, with the approximation becoming more accurate as L increases. This can be intuitively seen
from the gradual elimination of the “saw teeth” in Fig. 3 as the number of shifts increases.



Supplementary Note 3. Achieving Uniform Shifts through Laser and SPAD Cycle Mismatch
The implementation shown in Fig. 3 relies on the SPAD cycle period being different from the laser cycle. By default, the

duration for which the SPAD gate is kept on (called the active time window, shown as white boxes in Fig. 3), is set equal to
the laser cycle period B∆. After each active time window, we force the SPAD gate to be turned off (gray boxes in Fig. 3)
for a duration equal to td (irrespective of whether a photon was detected). As a result, the SPAD cycle length is equal to
B∆ + td. This ensures that the dead time from one SPAD cycle does not extend into the next when a photon is detected
close to the end of the current cycle. The total number of SPAD cycles over a fixed acquisition time, T , is therefore limited
to L = bT/(B∆+td)c.

Since the length of the laser cycle is B∆ and the SPAD cycle is B∆ + td, we automatically achieve the shift sequence
(0, td, 2td, . . .). Moreover, we can achieve any arbitrary shift sequence in practice by introducing additional artificial delays
(εl)

L
l=1 (using, say, a programmable delayer) at the end of each SPAD cycle that extend the inactive times beyond td. In

general, the additional delay
∑
l εl will require either increasing T or decreasing L, both of which are undesirable. In the

next section, we show that it is possible to choose εl’s such that the total extra delay
∑
l εl ≤ 1.5B∆, by making the SPAD

cycle length co-prime with the laser. Therefore, uniform shifting can be implemented in practice at a negligible additional
cost in terms of total acquisition time.

Quantifying acquisition time cost of uniform shifting
In this section, we bound the additional delay incurred due to uniform shifting. We consider the general case where the

SPAD active time window can be different from the laser cycle period. We also present a practical method for implementing
uniform shifting that relies on artificially introducing a mismatch in the laser and SPAD repetition frequencies.

Let td be the dead time of the SPAD, T be the total acquisition time, B be the number of bins in the histogram and ∆ be
the size of each histogram bin. Let N = bT/∆c be the total acquisition time and nd = btd/∆c be the dead time in units of the
histogram bin size. Suppose the SPAD is kept active for m bins in each cycle. Our goal is to find a small positive shift ε such
that m+ nd + ε becomes asynchronous to B, in the sense that uniform shifts modulo-B are achieved in N bins, and in equal
proportions for all shifts.

Let L = bN/m+ndc be the number of whole cycles that would be obtained if no shifts were used. For simplicity, assume
B is a multiple of L. We divide the range B into L equally spaced intervals and design a shift sequence (εi)

L
i=1 such that

each of the L cycles is aligned with the start of exactly one of these intervals.
When ε = 0, the dead time provides a shift amount equal to (m+nd)L/B mod L, in units of the interval size B/L. By

rounding it up to the nearest integer, we get the effective shift s = (m+nd+ε)L/B = d(m+nd)L/Be. We consider two cases:
Case 1: Suppose s and L are co-prime. In this case, the ith cycle has a unique shift (i− 1)s mod L for 1 ≤ i ≤ L.

Case 2: Suppose s and L are not co-prime and their greatest common divisor is g. We can express s = g · k and L = g · l
for some co-prime integers k and l. At the end of every l SPAD cycles, each of the l shifts {g, 2g, 3g, . . . , ..., l · g} is attained
once. Since we have g of these “groups” of l SPAD cycles, we can add an offset of i to the shift amounts of the ith group for
i = 0, 1, ..., g − 1. This will ensure a unique shift for each of the L cycles.

Additional delay due to shifting: The additional delay due to shifting is Lε in the Case 1 and Lε + (g − 1)B/L in Case 2.
Since Lε/B < 1 and g ≤ L/2, the total additional delay incurred due to shifting time is negligible and is at most 1.5B bins,
i.e., at most one-and-a-half extra laser cycle periods.

Achieving uniform shift sequence through frequency mismatch: Note that in both these cases, uniform shifting can be
achieved conveniently by operating the SPAD cycle frequency asynchronous to the laser frequency: L/Bε(L+s) in the Case 1
and L/Bε(L+s+1/l) in Case 2.



Supplementary Note 4. Derivation of mopt

Supplementary Figure 1. Effect of ambient flux and dead time on mopt . The optimal active time is a decreasing function of ambient
flux Φbkg and an increasing function of dead time td.

In this section, we derive the optimal active time for uniform shifting. We assume that the expected denominator sequence
is constant (achieved, say, using the method of laser and SPAD cycle mismatch from the previous section). Recall that we
use an upper bound on the `0 depth error as a surrogate for RMSE. From the proof of Result 1 we know that this is equivalent
to using the smallest denominator sequence value as a surrogate for RMSE. However, since the denominator sequence is
constant on average, we can use the total expected denominator Ξ from Eq. (S7) as a surrogate for depth accuracy—a lower
total expected denominator would correspond to higher depth errors and vice versa. We now derive the value of m that
maximizes Ξ.

Since the length of each SPAD cycle is m∆ + td, the number of cycles in a fixed acquisition time T is given by

L =
T

m∆ + td
. (S8)

From Eqs. (S7) and (S8), we get:

Ξ(m) =
T

m∆ + td

1− e−mΦbkg

1− e−Φbkg
.

where we have explicitly included the dependence of Ξ on the active time m. Intuitively, the first term represents the average
number of SPAD measurement cycles that can fit in time T and the second term is the expected denominator value in each
cycle (assumed to be uniform over all histogram bins in each cycle). The optimal active time mopt is the one that maximizes
the total denominator. Solving for dΞ/dm = 0, yields [Suppl. Ref. 5]:

mopt = − 1

Φbkg
LambertW(−e−tdΦbkg/∆−1)− td

∆
− 1

Φbkg
. (S9)

Interpreting mopt: Suppl. Fig. 1 shows the behavior of mopt for different values of dead time td and varying ambient flux
Φbkg. Observe that the optimal active time decreases with increasing Φbkg. Under high ambient photon flux, the average time
until the first photon detection after the SPAD active time window begins is small. As a result, keeping the SPAD active for a
longer duration is inefficient because it unnecessarily increases the length of the measurement cycle, and reduces the number
of measurements that can be acquired over a fixed acquisition time. Conversely, at lower flux levels, the optimal active time
increases to match the increased average inter-photon arrival time.

For a fixed background flux level, mopt is higher for longer dead times. When the dead time is long, increasing the active
time duration increases the probability of detecting a photon while not increasing the measurement cycle length by much.

A uniform shift sequence with SPAD active time equal to mopt can be implemented using the method described in Sup-
plementary Note 3.



Supplementary Note 5. Photon-Driven Shifting: Histogramming and Error Analysis

In this section we provide a proof of Result 3 which states that photon-driven shifting achieves a uniform shift sequence
for sufficiently large acquisition times.

This section also proposes an algorithm for computing the generalized Coates’s estimator for photon-driven shifting.
Unlike uniform shifting where the shift sequence is deterministic and can be pre-computed, the shift sequence in photon-
driven shifting is random and depends on the actual photon detection times. We show how the arrival timestamps can be
used to compute Di and Ni needed for the generalized Coates’s estimator. It is also possible to estimate the waveform in
free-running acquisition using a Markov chain-based model of the arrival times [Suppl. Ref. 6]. While the Markov chain-
based estimator is based on solving a non-convex optimization problem, the proposed generalized Coates’s estimator has a
closed-form expression. Both achieve equivalent performance in terms of depth recovery accuracy.

Proof of Result 3

Let (Sl)
L
l=1 denote the stochastic shift sequence, where 0 ≤ Sl ≤ B − 1 and 	 denote subtraction modulo-B with a wrap

around when the index falls below 1. This shift sequence forms a Markov chain with state space [0, B − 1] and transition
density given by [Suppl. Ref. 6]:

fSi+1|Si(si+1|si) =


(

1−e−Φbkg

1−e−BΦbkg

)
e−(si+1	si+B−td)Φbkg if si+1 	 si < td(

1−e−Φbkg

1−e−BΦbkg

)
e−(si+1	si−td)Φbkg otherwise.

The uniform distribution f(s) = 1
B is a stationary distribution for this irreducible aperiodic Markov chain, and hence it

converges to its stationary distribution [Suppl. Ref. 7] as L→∞. Let fk(s) denote the distribution of the kth shift. We have:

lim
k→∞

fk(s) = f(s)

Therefore, as L → ∞, the empirical distribution of (s1, s2, . . . , sL) → f(s) and all shifts are achieved with equal
probability making the shift sequence uniform. This also leads to a constant expected denominator sequence as shown in the
simulations below.

Simulations: Suppl. Fig. 2 shows the expected denominator sequence for different total acquisition times at three different
ambient flux levels. There are two main observations here. First, for short acquisition times there is a depth-dependent
bias which disappears as T increases. Second, for fixed T , the depth dependent bias is higher for higher flux levels. This
is because at high ambient light, the SPAD detects a photon almost deterministically after each dead time window elapses
which causes the Markov chain (Sl)

L
l=1 to have a longer mixing time than at lower ambient flux levels.

Supplementary Figure 2. Effect of flux and acquisition time on denominator sequence. The expected denominator sequence in the
photon-driven mode has a position dependent bias which disappears as the total acquisition time increases.



Histogram and denominator sequence computation
In this section, we provide details about the algorithm for computing Ni and Di from the shift sequence and the sequence

of photon arrival times. This leads to a computationally tractable method for computing the generalized Coates’s estimate for
the flux waveform and hence estimating scene depths.

Let (u1, u2, . . . , uL) denote the photon arrival times (in terms of bin index) in each SPAD cycle measured with respect to
the most recent laser cycle. Note that 1 ≤ ui ≤ B.

The histogram of photon counts is given by:

Ni =

L∑
l=1

1(ul = i)

To compute the denominator sequence, we loop through the list of photon arrival times ul. For each photon detection time
we increment Dj for every bin index j ∈ Jl,ul .

In the photon-driven shifting mode, the denominator sequence can also be computed in closed form. The shift sequence
(sl)

L
l=1 is determined by the photon arrival times ui as sl+1 = ul ⊕ nd where nd is the dead time in units of bins. As before,

Ni is given by the histogram of (ul)
L
l=1. Di can be computed in closed form in terms of the histogram counts: For each bin

index i, there are T
B∆ depth bins in total which can potentially detect photons. However, a photon detection in any depth bin

prohibits the nd bins that follow it from detecting photons. Therefore, the value of Di at the ith bin is given by subtracting
these bins from the total:

Di =
T

B∆
−
td/∆∑
j=1

Ni	j .

As before for the case of deterministic shifting, the likelihood function of the photon incidence probabilities (qi)
B
i=1 is

given by:

L(q1, q2, ..., qB) =

B+1∏
i=1

qNii (1− qi)Di−Ni .

Therefore, the generalized Coates’s estimator for photon-driven shifting is given as the following closed-form expression:

τ̂ = arg max
i

Ni
Di

= arg max
i

Ni
T
B∆ −

∑td/∆
j=1 Ni	j

. (S10)

Markov chain model-based estimator [Suppl. Ref. 6]

Supplementary Figure 3. Comparison between [Suppl. Ref. 6] and the proposed generalized Coates’s estimator. (a) shows the RMSE
curve for the two methods. Both methods have the same performance across depth. (b) and (c) show that the estimated waveforms using
the two methods are similar.

It is also possible to use a Markov chain for modeling the photon arrival times in free-running acquisition. The resulting
estimator [Suppl. Ref. 6] is based on solving a non-convex optimization problem, whereas the proposed generalized Coates’s



estimator has a closed-form expression, as shown above. Both achieve equivalent performance in terms of depth recovery
accuracy, as shown in Suppl. Fig. 3. In the regime of large acquisition time (T = 25 µs), and with Φbkg = 0.05,Φsig = 0.15,
the performance of both the estimators in terms of depth error is almost equivalent.

Performance Gain as a Function of Depth

Supplementary Figure 4. Asynchronous acquisition schemes minimize overall depth error, and as a byproduct also provide uniform error
with depth. The performance gain is larger at longer distances.

Suppl. Fig. 4 shows error vs. depth for photon-driven and conventional synchronous acquisition for different source and
background flux levels. There are two key observations:

1. The performance gain from photon-driven acquisition is greater at longer distances. (Although not shown here, similar
conclusion can be drawn for deterministic shifting as well.)

2. RMSE is approximately depth-invariant for photon-driven shifting.

Achieving uniform error over all depths is not our primary goal, but a byproduct of our optimal acquisition schemes. We
define optimality in terms of a surrogate of `2 depth error metric which measures overall depth error. Result 1 shows that the
optimal acquisition scheme that minimizes our error metric also has a constant denominator sequence for all depths.



Supplementary Note 6. Asynchronous Shifting: Practitioner’s View
In this supplementary note we provide practical guidelines for design of asynchronous acquisition strategies. We provide

a comparison between photon-driven shifting and uniform shifting with optimal active time mopt and show that there are
certain regimes where photon-driven shifting has slightly worse error performance than uniform shifting. We also analyze
the effect of number of SPAD cycles on depth error performance of photon-driven acquistion.

Derivation of Expected Denominator Sequence for Photon-Driven Acquisition
We consider a low SBR scenario with ri ≈ Φbkg for all i. Let (Di)

B
i=1 denote the denominator sequence obtained over L

SPAD cycles and a fixed acquisition time T . Since the length of each SPAD cycle is random, the number of cycles in time T
is also random. By the equivalence of the length of the active period of a cycle and its contribution to the total denominator,
we have:

D1 +D2 + ...+DB = M1 +M2 + ...+ML

where Mi is a random variable denoting the length of the ith measurement window. Note that the Mi’s are i.i.d. with a
discrete exponential distribution:

P (Mi = k) = e−(k−1)Φbkg
(
1− e−Φbkg

)
for k = 1, 2, 3, . . . . Therefore, E[Mi] = 1

1−e−Φbkg
. Taking expectation on both sides of the above equation, we get:

E[D1 +D2 + ...+DB ] = E[M1 +M2 + ...+ML] (S11)

≈ E[L]E[Mi] =
E[L]

1− e−Φbkg
, (S12)

where, we have assumed that Mi and L are approximately independent. We also have:

(M1 + td) + (M2 + td) + ...+ (ML + td) = T .

Taking the expectation on both sides and using Eq. (S12), we get:

E[L]

1− e−Φbkg
+ E[L]td = T

which implies that

E[L] =
T

1

1−e−Φbkg
+ td

.

Combining with Eq. (S11), we get:

E[D1 +D2 + ...+DB ] =
T

1 + (1− e−Φbkg)td
.

From Result 3, we know that E[Di] is constant ∀ i as L→∞. Under this assumption, we have for 1 ≤ i ≤ B:

E[Di]|photon-driven =
T

B(1 + (1− e−Φbkg)td)
. (S13)

Comparing expected denominator sequences for uniform shifting and photon-driven shifting: Recall from Supplemen-
tary Note 4 the expected denominator sequence for uniform shifting is given by:

E[Di]|uniform =
T (1− e−mΦbkg)

B(m∆ + td)(1− e−Φbkg)
. (S14)

Observe that E[Di]|photon-driven > E[Di]|uniform for all m ≥ 1, Φbkg and td. To a first order approximation, the expected
denominator sequence alone determines the depth estimation performance of the various techniques that we discussed. This
suggests that photon-driven shifting should be always better than uniform shifting. However, in some cases, depending on
the dead time and incident flux levels, deterministic shifting can outperform photon-driven acquisition. One such scenario is
demonstrated in Suppl. Fig. 5 using both simulation and experimental results. At certain values of dead time, photon-driven
shifting fails to achieve uniform shifts in the fixed acquistion time.



Supplementary Figure 5. In some special scenarios, depending on dead time and incident flux, uniform shifting may outperform photon-
driven shifting.

Supplementary Figure 6. Effect of reducing laser cycles on photon-driven shifting with optimal attenuation. Each curve has a fixed
ΦsigT product. As T decreases and Φsig increases, the RMSE rises. The effect of decreasing T can be overcome to some extent by
increasing Φsig.

Effect of reducing laser cycles on photon-driven shifting Intuitively, one would expect asynchronous acquisition tech-
niques to require a large number of cycles, in order to achieve uniform shifting and remove pileup as motivated in the main
text. However, it turns out that our combined method of photon-driven shifting and optimal attenuation can work with very
few laser cycles, provided that the signal flux is high. This is true even for relatively high ambient flux levels (we consider
Φbkg = 0.05). Intuitively, even though uniform shifting cannot occur with laser cycles much less than the number of bins B,
the combination of high effective Φsig and low effective Φbkg obviates the need for shifting.

In Suppl. Fig. 6, we evaluate depth error performance as number of laser cycles is decreased, while keeping the ΦsigT
product constant. For all Φsig levels, RMSE curves have flat valleys, with errors starting to rise beyond a certain T and
reaching the maximum possible error eventually. It is interesting to see the transition from the valley to max error for
different Φsig levels. As the Φsig level is increased, the transition happens at a lower acquisition time, until T becomes less
than about 2 laser cycles. Beyond this, the error cannot be reduced no matter how high Φsig is made. In some sense, this is
the limiting point of our method.



Supplementary Note 7. Combining Shifting Strategies with Optimal Flux Attenuation
In this section we derive an expression for optimal flux attenuation for photon-driven acquisition. We also provide some

information theoretic arguments for why it is important to combine asynchronous acquisition schemes with flux attenuation
to achieve optimal depth error performance.

Optimal Attenuation Fraction for Photon-Driven Shifting
We will use similar techniques as the derivation of Result 1 from Supplementary Note 2 and introduce an additional

variable Υ for flux attenuation fraction. In particular the expected denominator sequence in Eq. (S13) becomes:

E[Di] =
T

B(1 + (1− e−ΥΦbkg)td)
. (S15)

From Eq. (S6), we have:

1

B

B∑
τ=1

P(τ̂ 6= τ) ≤ 1

B

B∑
i,τ=1

1

2
exp

−1

2

(qτ − qi)2

qi(1−qi)
E[Di]

+ qτ (1−qτ )
E[Dτ ]


≈ 1

B

B∑
i,τ=1

1

2
exp

(
−1

2
E[Di](qτ − qi)

)

=
B

2
exp

(
−1

2
E[Di](qτ − qi)

)
where in the second step, we have assumed that the denominator sequence is uniform, qi, qτ � 1 and qτ − qi ≈ qτ + qi.
Substituting Eq. (S15), the optimal attenuation fraction is given by:

Υopt = arg max
Υ

[E[Di](qτ − qi)]

= arg max
Υ

Te−ΥΦbkg(1− e−ΥΦsig)

B(1 + (1− e−ΥΦbkg)td)
.

The optimal attenuation fraction Υopt depends on various system parameters (number of bins, acquisition time and the
dead time), which are known. Υopt also depends on the signal and background flux levels, which can be estimated a priori
using a small number of laser cycles. Using the estimated values, the optimal flux attenuation can be determined, which can
be used to further reduce the pile-up, and thus improve the depth estimation performance.

Fig. 6 in the main paper shows simulation results of depth RMSE for the conventional synchronous mode and photon-
driven shifting over a range of attenuation factors and two different dead times. The locations of the minima agree with the
theoretical expression derived above. There are two key observations that can be made from the figure. First, the optimal
attenuation fraction with shifting is much higher than that for conventional synchronous acquisition. Second, combining
attenuation with photon-driven shifting can provide a large gain in depth error performance, reducing the RMSE to almost
zero for some combinations of SBR and dead time.

Information Theoretic Argument for Combining Shifting with Flux Attenuation
We formalize the notion of discriminative power of the histogram data for distinguishing between incident flux waveform

levels using a concept from statistics called Fisher information [Suppl. Ref. 4, pp. 35]. This concept was also used in
[Suppl. Ref. 6]. Fisher information measures of the rate of change of the likelihood function with respect to the unknown
parameters ri. For any attenuation coefficient Υ, we can compute:

I(ri; Υ) = E

[(
∂

∂ri
logL(Ni;Di, ri,Υ)

)2
]

Substituting the expression for likelihood from Eq. (S5) and simplifying yields:

I(ri; Υ) =
DiΥ

2

eΥri − 1
(S16)

Asynchronous acquisition methods can only change Di which appears in the numerator of the Fisher information. Atten-
uation can further increase the Fisher information and lead to better flux utilization than would be possible with shifting
alone.



Supplementary Note 8. Details of Simulations and Experiments
Calculating RMSE

We calculate RMSE in a modulo-B sense in our simulations and experiments. For example, this means that the first and
the last histogram bins are considered to be only 1 bin apart. Let M be the number of Monte Carlo runs, B be the number
of histogram bins, τi be the true depth bin index and τ̂i be the estimated depth bin index for the ith Monte Carlo run. We
calculate RMSE using the following formula:

RMSE =

[
1

M

M∑
i=1

(
B

2
−
(
τ̂i − τi +

B

2

)
modB

)2
] 1

2

.

Monte Carlo Simulations

In Figs. 4 and 7, the dead time was 10 ns, and the exposure time was 2.5 µs In Fig. 6, the exposure times were 2.5 µs and
2.9 µs respectively for the two dead times, to acquire an equal number of SPAD cycles in both cases. At low incident flux and
longer dead times, an active time duration longer than B may be needed to increase the probability that the SPAD captures a
photon.

Experimental Setup

Suppl. Fig. 7 shows various components of our experimental setup. The SPAD is operated by a programmable control
unit and photon timestamps are captured by a TCSPC module (not shown).

Supplementary Figure 7. Experimental setup The setup consists of a collimated pulsed laser and a single-pixel SPAD detector optically
collocated using a beamsplitter. A pair of galvo mirrors scans the image plane and the light returning from the scene is focused on the
detector using a focusing lens. The detector and focusing lens are enclosed in a light-tight box (not shown here) so that the all the light
arriving at the detector pixel must pass through the lens.

Single-Pixel Experiment Results

Suppl. Fig. 8 shows depth RMSE at four different ambient flux levels for a range of SBR values. A combination of photon-
driven shifting with optimal attenuation provides the best performance of all techniques. For high ambient flux levels, even at
high SBR, the conventional 5% rule-of-thumb and shifting alone fail to provide acceptable depth reconstruction performance.



Supplementary Figure 8. RMSE in single-pixel experiments. Asynchronous schemes outperform the state-of-the-art method of syn-
chronous acquisition with extreme attenuation at all flux levels. A combination of photon-driven shifting with optimal attenuation provides
an order of magnitude lower RMSE at high ambient flux levels.

This suggests that the optimal acquisition strategy for SPAD-based LiDAR must use a combination of both shifting and
attenuation.



Additional Result Showing Effect of Number of SPAD Cycles

Supplementary Figure 9. Depth reconstructions for varying number of SPAD cycles for “Reindeer” scene. Observe that the recon-
struction accuracy improves as the number of cycles increases. Photon-driven shifting provides better reconstruction performance than all
synchronous acquisition schemes. The source flux Φsig = 0.5 and ambient flux Φbkg = 0.01 for this experiment which corresponds to an
SBR of 50.
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