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A B S T R A C T

Three-dimensional visualization of tumor ablation procedures have significant clinical value because the ability
to accurately visualize ablated volumes can help clinicians gauge the extent of ablated tissue necrosis and plan
future treatment steps. Better control over ablation volume can prevent recurrence of tumors treated using
ablative procedures. This paper presents a kernel based smoothing algorithm called MATÉRNSMOOTH to reconstruct
shear wave velocity maps from data acquired through ultrasound electrode vibration elastography. Shear wave
velocity estimates are acquired on several intersecting imaging planes that share a common axis of intersection
collinear with the ablation needle. An objective method of choosing smoothing parameters from underlying data
is outlined through simulations. Experimental validation was performed on data acquired from a tissue mi-
micking phantom. Volume estimates were found to be within 20% of the true value.

1. Introduction

Ultrasound elastography provides a non-invasive way of probing
tissue stiffness and is a valuable tool for monitoring ablative treatment
of cancerous tumors in the liver and other organs [1–11]. Tissue dis-
placements are tracked using ultrasound echo data and tissue strain
[5,10–12] or shear wave velocities (SWV) [2,3,9,13] are estimated from
these displacements. This method provides estimates of elasticity of the
tissue at specific locations in the scan plane of the ultrasound system. In
this paper, a mechanical property called “shear wave velocity” is used
as a quantitative surrogate for tissue stiffness because (in general) the
shear wave speed is higher in stiffer tissue than softer tissue. Therefore,
it provides a way to distinguish stiffer tumors from healthy tissue. An
ablation procedure involves localized heating of cancerous tissue with
the help of radiofrequency (RFA) or microwave ablation (MWA) mod-
alities. Heating causes cell death and an accompanying stiffness in-
crease which can be detected in almost real-time using ultrasound
[10,14,15].

Three-dimensional (3D) reconstruction of ablated regions to de-
termine under-treatment of tumors is a 3D problem [16–19]. 3D ima-
ging is essential to determine if the entire tumor and surrounding
margins have been successfully ablated to ensure favorable outcomes
from minimally invasive procedures [20–24]. The algorithm described
in this paper can be utilized with both current 3D ultrasound and

elastographic imaging performed using a wobbler [7,16,25], two-di-
mensional (2D) transducer arrays [26] or other innovative approaches
for 3D reconstruction [25,27,28], that are utilized in this paper.

The transition from thermally necrotic tissue to healthy tissue is
difficult to describe mathematically because the exact process by which
cell death occurs is quite complex. The transfer of heat is governed by
the bioheat transfer equation [29]. This is coupled with a model for cell
death which predicts the degree of necrosis as a function of time in
response to the amount of heat energy deposited in a particular area of
the tissue [30]. A simplified ellipsoidal model is commonly utilized for
3D problems [31] where the shear stiffness is assumed to be a high
(constant) number inside the ellipsoid and a different lower (constant)
number outside the ellipsoid. In particular, for liver tissue, DeWall et al.
[32] studied the behavior of stiffness as a function of distance from the
ablation needle. Their mechanical testing results indicate that the
stiffness can increase quite rapidly within a few millimeters of the ab-
lation needle, but it is by no means a discontinuous jump. Therefore,
sharp transitions in stiffness profiles used in simulations are an over-
simplification of what is seen in practice. This paper presents a novel
choice of reconstruction kernel that can capture a smooth but rapid
transition of stiffness as a function of distance.

The rest of this paper is organized as follows. The experimental
setup and some theoretical background related to reproducing kernel
Hilbert spaces is given in Section 2 to motivate the MATÉRNSMOOTH
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algorithm. Simulation and experimental results are shown in Section 3.
Some heuristics on choosing the smoothing parameters in a real world
clinical setting are presented in Section 4, followed by concluding re-
marks in Section 5.

2. Materials and methods

2.1. Experimental setup

Radiofrequency (RF) data was acquired from an ultrasound
phantom that contains a stiff region surrounded by a softer region. This
arrangement mimics the presence of a stiff tumor in healthy tissue. SWV
images are obtained on scanning planes that share a common axis of
intersection collinear with the needle. However, this common axis is
not achieved experimentally.

On account of this peculiar data acquisition arrangement also used
in the clinical setting, point estimates of SWV along radial lines ema-
nating from a common point of intersection [27] are obtained on
transverse planes at constant depths. The mutual orientations of these
image planes with respect to the transverse planes are shown in Fig. 1.
One such transverse plane with locations of data samples is depicted in
Fig. 2. Although the tumor is shown to have a perfectly circular cross-
section, in reality it may be more irregularly shaped. A scatterplot of
one plane of raw experimental data is shown in Fig. 3. Note that there
are spurious high values of SWV close to the center where the needle is
located.

The goal is to help clinicians visualize the ablated region by dis-
playing a smooth image of the stiffness on a fine grid over the entire
imaging plane while not smoothing out the boundary too much. These
conflicting requirements coupled with the peculiar data sampling pat-
tern make this problem challenging.

Note that this is fundamentally a 3D reconstruction problem.
Although this study is limited to reconstruction of individual transverse
planes, it may also be possible make a stack of such reconstructions to
obtain a 3D view of the imaged volume, or perform a full 3D re-
construction using the complete dataset. The full 3D reconstruction
approach is avoided here to keep grid size and computation time
manageable. The technique presented in this paper can be easily ex-
tended by using a 3D kernel function instead of 2D. The number (P) of
radial acquisition lines can be changed. Three different values of
P=6,12,16 are considered in this study.

2.2. Shear wave velocity reconstruction

SWV reconstructions are obtained for each scan plane using the time
of arrival algorithm [2]. A shear wave pulse is produced by vibrating
the needle using an actuator, and multiple frames of RF ultrasound data
are acquired simultaneously. The scan sequence and reconstruction
algorithm is discussed in more detail in the paper by DeWall et al. [9].
Displacements between consecutive frames are estimated using a one-
dimensional (1D) cross-correlation algorithm and the peak displace-
ments at each pixel are recorded to localize the shear wave pulse in
space and time. The reciprocal of the slope of a plot of the time of
arrival of the shear wave pulse as a function of lateral distance away
from the needle is used to estimate shear wave velocity at each pixel in
the scan plane [33].

2.3. Transverse plane reconstruction

Restricting attention to individual transverse planes, the SWV field
can be represented by a function. f : [0, )2 . Noisy point evalua-
tions of this function are acquired at different locations =t{ }i i

n
1:

Fig. 1. The mutual orientations of different scan planes and a transverse plane
are shown. The scan planes share a common axis of intersection. Each trans-
verse plane is at a constant depth and is orthogonal to all scan planes.

Fig. 2. Tissue stiffness measurements are available on radial intersecting lines
over many transverse planes. One of the planes is shown here. Cross-marks
indicate locations of data samples.

Fig. 3. Example data with 6 radial lines is shown; observe the higher peaks are
closer to the origin shown in red indicating the location of the stiffer region.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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= +u f t( )i i i

where each ti
2 is situated along the radial lines depicted in Fig. 2,

and i is assumed to be i.i.d. Gaussian distributed noise with unknown
variance. A reconstruction of f (via interpolation or approximation) on
a fine grid of M points is desired. As it stands, the problem is ill-posed
because the number of data points n is usually much smaller than the
size of the reconstruction grid (n M). Typically, the number of data
points obtained on each plane is on the order of 103, whereas the grid
may consist of 104–105, points. It is necessary to restrict the space of
functions that the reconstruction algorithm operates on in order to
guarantee good theoretical properties:

Definition 1 ((Reproducing Kernel Hilbert Space)). A reproducing kernel
Hilbert space (RKHS) of functions f on 2 is defined as the Hilbert
space of functions over which the point evaluation functional is a
bounded linear functional, i.e., for every ti

2 there exists <Mi
such that f t M f( )i i for all f and f denotes the RKHS norm.

In the most general setting, the function f is assumed to be a member
of a reproducing kernel Hilbert space (RKHS) R with the reproducing
kernel R. So the optimization problem of interest is [34]:

= +
=

f t u f t f( ) arg min ( ( ))
f i

n

i i
1

2 2

R R (1)

where · R denotes the RKHS norm. Another interpretation is to
consider this as a regularized solution to an ill-posed inverse problem
also called the Fredholm equation of the first kind, with the point
evaluation function playing the role of the “blurring function” [35] in
this case. The following theorem characterizes the existence of a solu-
tion to this optimization problem:

Theorem 1 ((Representer Theorem)). The solution of Eq. (1) can be
expressed in the form:

=
=

f t c R t t( ) ( , ).
i

n

i i
1

A short proof is presented in Appendix A. In fact, the values of ci can be
evaluated in closed form [36,37]. This theorem has important practical
ramifications because it reduces the problem of finding f in an infinite
dimensional Hilbert space to a problem of finding coefficients =c{ }i i

n
1

which is a finite dimensional problem. The smoothing parameter λ is
chosen through generalized cross-validation (GCV) [37].

The choice of the kernel function R is important because it dictates
the smoothness properties of the final fit. The Matérn radial basis
function is used in this paper. It is defined in [38] (ch. 2, sec. 2.7), and
in [39] as:

=
+

R t t
r

t t
r

K t t
r

( )
2 ( 1 2)i

i i
1 2 (2)

with >r, 0, and K is the modified Bessel function of the second
kind. The unknown function can be approximated as:

=
=

f t c R t t^ ( ) ( ).
i

n

i i
1

Intuitively, this formulation suggests that each data point ti imposes a
“region of influence” that varies with its distance from an arbitrary
point t. Note that the absolute locations of the points t andti are im-
material, only the distance plays a role in the evaluation of the kernel.
The characteristics of this region of influence depend on the shape of R,
which is controlled using the two parameters v and r. The smoothness
(differentiability) is controlled using v whereas the range of influence is
controlled by r. It is customary to call v the smoothness parameter
whereas r is called the range (or scale) parameter of the Matérn cov-
ariance function. In particular, as , the Matérn Kernel converges

to an infinitely differentiable Gaussian kernel function. The advantage
of using the Matérn kernel is that it provides sharper roll-offs than the
infinitely differentiable Gaussian function, giving the ability preserve
boundary details. The Matérn kernel is also suited to sparse data sets
and more efficient than a similar Gaussian kernel. A common choice is
to set = +m 1

2 for different non-negative integers m, resulting in a
simple closed form expression for the radial basis function R (·) [38].

It can be shown that linear combinations of the Matérn kernel
function produce functions whose frequency response decays like a
polynomial [40], where the rate of decay is related to the v parameter.
The space of such functions is known is a Sobolev space, formally de-
fined as follows ([41], Ch. 8):

Definition 2 ((Sobolev Space of functions on 2)). The Sobolev space
( )s,2

2 is defined as the space of square integrable function f on 2

that satisfy

+ + <f d d( ) |( )( , )|s2
1
2

2
2

1 2
2

1 22 (3)

where

= +f f x x e dx dx( )( , ) ( , ) j x x
1 2 1 2

( )
1 22

1 1 2 2

denotes the 2D Fourier transform of f.

Furthermore, it can be shown that s,2 is an RKHS with the Matérn
function as its reproducing kernel and hence the RKHS norm can be
defined using the integral in Eq. (3).

Theorem 2. Let R (·) be as defined in Eq. (2). Then +
+

R (·)( 1 2)
4 ( 1)3 2 is the

reproducing kernel for + ( )r
( 1),2
1 2 .

The proof involves some algebra to calculate the inverse 2D Fourier
transform of + +( )r

1
1
2

2
2 1

2 as shown in Appendix B. Note that
different authors set the leading normalization constants in different
ways. For simulations and data analysis in presented this paper, the
leading constant C was chosen in such a way that C d r K d r( ) ( ) is
normalized to 1 when d=0 for fixed r( , ). This choice is made pos-
sible by the fact that K u( ) behaves like u2 ( )1 as u 0 (see [42]
Sec. 9.6.9, pp. 375).

The optimization problem described in Eq. (1) can now be solved
over different spaces R r( , ) by choice of kernel parameters r( , ). This

Fig. 4. Matérn kernel based reconstruction algorithm.
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is main idea behind the MATÉRNSMOOTH algorithm presented in Fig. 4.
For a fixed pair of kernel parameters, choosing the smoothing para-
meter λ through GCV has the following desirable theoretical property:

Theorem 3 ((GCV Theorem)). Let f be the solution of the optimization
problem in Eq. (1) and define the predictive mean squared error (PMSE) as

= =PMSE f t f t( ) ( ( ) ( ))n n i
n

i i
1

1
2 Let opt be the optimal value of the

smoothing parameter (that depends on the unknown function f) that
minimizes the PMSE and let GCV be the value chosen using generalized
crossvalidation. Also, define the inefficiency function =I n( ) PMSE

PMSE
( )
( )

n GCV
n opt

.
Then as the number of data points n , I n( ) 1.

A proof of this theorem can be found in the paper by Utreras [43]
and will not be reproduced here.

Corollary 4. Let the hypotheses of Theorem 2 hold. Then the algorithm in
Fig. 4, has the property that as n , I n( ) 1 on the union of Sobolev
spaces r S xS

r
( , ) ,21 2 .

The corollary is proved in Appendix C.
For comparison, a standard nearest neighbor interpolation algo-

rithm is used to interpolate the scattered 2D data on each transverse
plane. Various image quality metrics including signal-to-noise ratio
(SNR), contrast (C) and contrast-to-noise ratios (CNR) are calculated
using regions of interest (ROI) chosen in the inclusion and the back-
ground.

2.4. Simulation method

The following function definition was used for generating simulated
3D data:

= + +g x y z x y( , , ) 4 if 1
1 otherwise.

z2 2 ( 2 . 25)
1 . 5

2
2

This mimics a stiff inclusion in a soft background with a stiffness ratio
of 4, with the center of the inclusion at a depth of 2.25 cm below the
surface of the phantom as shown in Fig. 5. Data was generated at dif-
ferent depths z and the reconstruction algorithm was applied over each
plane at constant depth.

To guide the selection of kernel parameters, this data generator was
used to simulate noisy data with a radial acquisition pattern as shown in
Fig. 2. Three different cases for P= 6, 12, 16 using angular increments
of P, 100 radial samples over 4 cm and 100 samples over a depth of
4.5 cm in the z direction were used. The reconstruction was performed
in the bounded box [−2,2]× [−2,2]× [0,4.5]. Zero mean additive
Gaussian noise with a standard deviation of σ=0.5 was used, and the
simulation was run 10 times for each pair of r( , ) values, with

{0.2, 0.9, 1.5, 2.5} and r {0.04, 0.1, 0.2, 0.4, 0.6}. Note that the
standard deviation of 0.5 when detecting a jump of 3 units corresponds
to a signal to noise ratio of approximately 15 dB which resembles the
kind of noise seen in ultrasound based SWV measurements. The nu-
merical values used in this simulation were chosen to match the ground
truth that one theoretically expects to observe on a phantom with an
ellipsoidal inclusion.

3. Results

3.1. Simulation results

The SWV is reconstructed on a fine grid of M=106 points using the
Matérn radial basis approximation and the predictive mean squared
error is estimated using:

=PMSE r
M

g l m n g l m n( , ) 1 ^ 4( 50)
100

, 4( 50)
100

, 4.5
100

4( 50)
100

, 4( 50)
100

, 4.5
100l m n, ,

2

where g is the reconstructed function, g is the true function and the sum
is calculated over a discrete grid of points 0≤ l m n, , ≤99 and
l m n( , , ) 3. Mean and standard deviation of PMSE from these Monte
Carlo simulations are shown in Tables 1–3.

It is clear from these tables that the PMSE improves as the number
of radial lines P increases. The pair =r( , ) (0.9, 0.4) gives the lowest
reconstruction error in all three cases. The next best choice of para-
meters, if first order mean squared differentiability is desired, are

=r( , ) (1.5, 0.4). This choice of kernel parameters is used later for re-
constructions from experimental data acquired on a tissue mimicking
phantom. It is worth noting that the reconstruction quality is more
sensitive to the choice of range r than the smoothness v. A surface plot
of the PMSE over a wider range of v and r values is shown in Fig. 6. By
controlling v and r, it is possible to reduce the spoke-wheel artifacts that
appear due to the radial sampling strategy (Fig. 7).

3.2. Experimental results

Experimental data was acquired on a tissue mimicking phantom
that consisted of an ellipsoidal inclusion in a soft background with
known stiffness. The approximate mathematical description of the size
and location of the inclusion matches the model used for generating
simulated data as described in the Materials and Methods section. Three
different data sets are obtained experimentally by changing the number
of radial sampling lines to P= 6, 12 and 16, respectively.

Fig. 8 shows the reconstructed SWV images over one particular
image plane passing through the center of the inclusion. The top row of
images show reconstructions using incorrectly chosen kernel para-
meters which result in bright streaks along the radial sampling lines.
But when the optimal r( , ) pair is used, this spokewheel artifact is
greatly reduced as seen in the second row of images. Fig. 9 shows re-
construction results using additional r( , ) combinations for P=6
planes. Notice that increasing values of r( , ) correspond to increased
level of smoothing.

SWV values obtained using MATÉRNSMOOTH algorithm and nearest

Fig. 5. Function model used for generating simulated data. The stiffer region is
shaded gray and is surrounded by a softer region. The dimensions match the
design of an actual phantom that is used for experimental evaluation of the
algorithm.
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neighbor interpolation are shown in Table 4. These values agree with
SWV measurements obtained using a commercial (SuperSonic Imagine)
ultrasound scanner. Table 5 shows various image quality metrics cal-
culated using two regions of interest fixed in the background and the
inclusion respectively. The kernel smoothing algorithm provides higher
SNR than nearest neighbor interpolation.

Inclusion volume is an important quantity that helps clinicians
gauge the extent of the ablated region and determine if additional
treatment would be necessary. A clinician usually measures the prin-
cipal axes of the inclusion from the reconstructed images displayed on a
graphical user interface. Volume estimates for the ellipsoid are obtained
from experimental reconstructions by measuring the three semi-prin-
cipal axes (a, b, c) and using the ellipsoid volume formula =V abc4

3 .
With a smoothing algorithm there is a risk of over-smoothing which can
lead to loss of sharp boundary information and cause the volume to be
severely under-estimated. Results for different numbers of radial lines
along with the ground truth volume are shown in the box plot in
Fig. 10. Note that the volume measurements using MATÉRNSMOOTH re-
construction are very similar to those obtained from a standard nearest
neighbor interpolation.

The estimated volume is biased and underestimates the true volume
in all three cases by about 20%. This is expected because there are
multiple smoothing and noise filtering steps in the signal processing
leading up to the final images shown in Fig. 8, which erodes the
boundary detail. The bias in measuring the principal axes of the ellip-
soid is only about 7% which gets magnified by a factor of 3 when
calculating the volume. It is possible to create a thresholding procedure
that converts the reconstructed images into binary images that are
white inside the inclusion and black outside. The clinician can control a
slider to smoothly transition between different levels of thresholding
and obtain images like Fig. 11.

4. Discussion

The Matérn kernel reconstruction algorithm developed in this paper
provides an objective method for choosing the degree of smoothness for
3D reconstructions from a stack of 2D planes. For computational
complexity reasons, this paper presented an algorithm which uses an
intermediate step of reconstructing 2D planes and stacking them to
form a 3D reconstruction. It is possible to generate the 3D

Table 1
Mean and standard deviation of PMSE for P=6 radial lines.

v r

0.04 0.1 0.2 0.4 0.6

0.2 0.920 (0.019) 0.546 (0.020) 0.284 (0.017) 0.154 (0.011) 0.126 (0.009)
0.9 0.650 (0.015) 0.276 (0.011) 0.117 (0.007) 0.085 (0.006) 0.085 (0.007)
1.5 0.551 (0.013) 0.197 (0.009) 0.092 (0.006) 0.088 (0.010) 0.099 (0.016)
2.5 0.449 (0.011) 0.136 (0.007) 0.089 (0.008) 0.149 (0.041) 0.264 (0.098)

Table 2
Mean and standard deviation of PMSE for P=12 radial lines.

v r

0.04 0.1 0.2 0.4 0.6

0.2 0.778 (0.015) 0.341 (0.013) 0.167 (0.008) 0.108 (0.005) 0.096 (0.005)
0.9 0.420 (0.011) 0.134 (0.006) 0.084 (0.004) 0.074 (0.003) 0.074 (0.003)
1.5 0.313 (0.009) 0.102 (0.005) 0.078 (0.004) 0.078 (0.003) 0.083 (0.004)
2.5 0.221 (0.007) 0.087 (0.004) 0.080 (0.003) 0.114 (0.011) 0.167 (0.027)

Table 3
Mean and standard deviation of PMSE for P=16 radial lines.

v r

0.04 0.1 0.2 0.4 0.6

0.2 0.688 (0.022) 0.265 (0.015) 0.135 (0.009) 0.093 (0.006) 0.084 (0.005)
0.9 0.317 (0.014) 0.107 (0.006) 0.075 (0.004) 0.068 (0.003) 0.069 (0.003)
1.5 0.223 (0.011) 0.087 (0.005) 0.072 (0.003) 0.074 (0.003) 0.082 (0.004)
2.5 0.153 (0.008) 0.079 (0.004) 0.077 (0.003) 0.128 (0.021) 0.206 (0.055)

Fig. 6. A surface plot of PMSE values for different combinations of r( , ) is
shown. The local minimizer is also shown. For every pair of values, the tuning
parameter λ was chosen through GCV.
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reconstruction directly by treating the SWV values as a function of 3D
coordinates. This has practical significance because the process of ab-
lation is governed by a complex coupled system of heat transfer and
tissue necrosis, that may be difficult to model accurately [44]. The al-
gorithm presented in Fig. 4 has good theoretical properties in that it
applies an optimum amount of smoothing by careful choice of the
smoothing parameter and the kernel function. The final output will be
sensitive to the choice of the sets S1 and S2. Although it is difficult to
develop a general theory on choosing these sets, some heuristic
guidelines are given below.

By inspecting the B-mode and SWV image of the ablated area, the
clinician can get an idea of the sharpness of the transition from ablated
region to healthy tissue. Their subjective judgment can be used to guess
some reasonable range of integer values for degree of smoothness for
the transition and choosing = +m 1

2 for small integer values of m.
Additionally, if the B-mode or SWV image suggests any discontinuities,
values of v < 0.5 that will promote even sharper, non-differentiable

Fig. 8. Reconstructions of experimental data using different Matérn kernel
parameters for different numbers of radial lines of data. Top row shows that the
spoke-wheel image artifact is ameliorated using =r( , ) (1.5, 0.4) as seen in the
bottom row. Top row =r( , ) (2.5, 0.04) and bottom row =r( , ) (1.5, 0.4).

Fig. 9. Reconstructions of experimental data using different Matérn kernel
parameters for different r( , ) combinations. Top row =v 0.2, bottom
row =v 0.9, columns left-to-right, =r 0.04, 0.4, 1.0.

Fig. 7. Reconstructions from simulated data using different Matérn kernel
parameters for different numbers of radial lines of data. Top row shows the
spoke-wheel image artifact which can be avoided by proper choice of r( , ) as
seen in the bottom row. Top row =r( , ) (2.5, 0.04) and bottom row

=r( , ) (1.5, 0.4).

Table 4
SWV values (m/s) using the MATÉRNSMOOTH algorithm and nearest neighbor
interpolation for comparison in the inclusion (inc) and background (bkg) re-
gions. SWV values were also measured using a commercial SuperSonic Imagine
ultrasound scanner were estimated to be 0.9 (0.07) m/s in the inclusion and 1.2
(0.03) m/s in the background. Numbers in parantheses indicate one standard
deviation.

MATÉRNSMOOTH algorithm Nearest neighbor interpolation

inc bkg inc bkg

P=6 1.44 (0.29) 0.83 (0.13) 1.48 (0.40) 0.88 (0.20)
P= 12 1.49 (0.37) 0.89 (0.20) 1.51 (0.47) 0.94 (0.23)
P= 16 1.77 (1.12) 0.90 (0.23) 1.64 (0.86) 0.97 (0.24)

Table 5
Image quality metrics SNR, C and CNR in dB.

MATÉRNSMOOTH algorithm Nearest neighbor interpolation

SNR (inc) SNR (bkg) C CNR SNR (inc) SNR (bkg) C CNR

P=6 13.8 16.1 4.8 5.5 11.6 12.9 4.5 2
P=12 12.1 13.0 4.5 3.1 10.3 12.1 4.1 0.6

Fig. 10. Box plot showing the volume estimates when the ellipsoidal inclusion
is reconstructed using 6, 12, 16 radial acquisition lines. The true volume is
shown using the constant horizontal line.
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reconstructions may be used. Unlike v which has an intuitive relation-
ship to the smoothness of the final fit, the choice of scale parameter r is
subtler. As a rule of thumb, r should be large enough so that more than
one neighboring data point is captured by a kernel centered around any
data point, and should not be so large that far away points are un-
necessarily weighted heavily.

Different values of r corresponding to the kth smallest distance be-
tween any two data points can be tried for, say, k=1, 2, 3,…, and using
the simulation method discussed previously, the combination of values
that provide a local minimum value of r( , ) should be used.

Various artifacts are visible in the final 3D visualization shown in
Fig. 12. There is a high SWV artifact close to the needle due to the
presence of specular reflections from the needle in that region. Next, a
low velocity artifact can be seen inside the ellipsoid because the shear

wave does not instantaneously start traveling at its maximum speed in
the stiff medium after originating from the line source (ablation
needle). The high velocity artifacts close to the edge of the volume can
be attributed to lower lateral resolution from reduction in effective
aperture size near the edge of the transducer.

The ability to obtain real-time volumetric visualization of the ab-
lated region is of paramount interest in the clinic after the ablation
procedure is completed. Approaches that can perform reconstructions
with sparse data for faster and accurate visualizations are therefore
important. In addition, thermal ablation regions created with RFA or
MWA are generally ellipsoidal and therefore the circular approximation
used does not introduce significant errors.

5. Conclusion

The Matérn kernel smoothing algorithm provides a flexible yet ob-
jective way of reducing the spoke-wheel artifacts in SWV maps re-
constructed from noisy ultrasound elastography data. The predictive
mean squared error from a known simulation model was used for
making an educated guess for kernel parameters. In phantom data, the
volume was underestimated by about 20% because of loss in boundary
detail from smoothing. The number of radial acquisition lines used in
reconstruction did not make much difference to the choice of kernel
parameters. This is probably because the inclusion shape is perfectly
symmetric (ellipsoidal) and the planar cross-sections are circular.
Increasing the number of radial acquisition lines will be advantageous if
the boundary is more undulating, or has corners. A final thresholding
step can be used to automate the process of manually annotating ab-
lation boundaries for size estimation.
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Appendix A:. Proof of Theorem 1

Define the space = = =f f a R t t{ : ( , )}R i
n

i i0 1 . Clearly 0 is a subspace of R and one can write =R 0 1, where 1 consists of all the
functions that are orthogonal to the functions in the subspace 0. So, any g R can be represented as = +g g g0 1 such that

+ = +g g g g0 1
2

0
2

1
2

R R R. Moreover, =g t g t( ) ( )i i0 because point evaluation at ti is equivalent to an inner product operation with the re-
producing kernel R t(·, )i 0. This implies that:

Fig. 11. Thresholded images created from the P= 16 image from the bottom right image in Fig. 8. As the threshold is gradually increased, a smaller region of the
image appears as an inclusion.

Fig. 12. A 3D rendering of the stiffer inclusion phantom produced from a stack
of individual 2D planes at different depths.
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so that the solution must lie in 0. The solution is unique because the objective function in Eq. (1) is convex and coercive.

Appendix B:. Proof of Theorem 2

By definition of the Gamma function,

+ = u e du( 1) u
0

where, substituting = + +u r(1 )2
1
2

2
2 and rearrangement yields:

+ + =
+
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The inverse 2D Fourier transform is given by:
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where Eq. (B.3) is obtained by substituting Eq. (B.1) in (B.2); Eq. (B.5) follows from the fact that the inner integral is the integral of a 2D Gaussian
function which evaluates to t ; Eq. (B.6) is obtained by substituting = +t re x xu1

2 1
2

2
2 and using the fact that cosh(u) is an even function; and Eq.

(B.7) follows from the definition of the modified Bessel function of the second kind ([42], Sec. 9.6.24, pp. 376). Finally, Eq. (B.8) follows from the
definition of R (·) in Eq. (2).

Appendix C:. Proof of Corollary 4

Fix any ×r S S( , ) 1 2. Then from Theorem 2, as n , I n( ) 1r, , where the dependence of the inefficiency function on v and r is explicitly
shown. Since R r, is the reproducing kernel for +

r
( 1),2
1 , solving the optimization problem in Eq. (1) produces a function +f r

( 1),2
1 . Repeating this

process for all r( , ) pairs it follows from Theorem 2 that I n( ) 1r, with +f r
r

, ( 1),2
1 .
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